

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Flow dependent stochastic Perturbations

Compare Singular Vector (SV) with Breeding (BV)

Baroclinic instabilities and deep convection

Lagged Forecast Perturbations

Michael Denhard & Arwed Ockel

Evolution of ensemble spread

single case, total pert. energy 700 hPa

Initially

0°N

60 ° N

50 ° N

40 ° N

30 ° N

20 ° N

Breeding perturbations

Singular Vector perturbations

Maximum – red

70 ° N

60 ° N

50 ° N

40 ° N

30°N

20 °I

Evolution of ensemble spread

single case, total pert. energy 700 hPa

+48h

Breeding perturbations

Singular Vector perturbations

Maximum – red, twice the scale as initially

SV – red, BV – blue, Random Field Pert. – Green, Random Pert. - black

h_da Hochschule Darmstadt UNIVERSITY OF APPLIED SCIENCES Deutscher Wetterdienst Wetter und Klima aus einer Hand

Initial Perturbations in the Lorenz63 model (Master Thesis Arwed Ockel)

- → Singular Vector
- → Normal Mode
- → NM_SqE

h_da Hochschule Darmstadt UNIVERSITY OF APPLIED SCIENCES Deutscher Wetterdienst Wetter und Klima aus einer Hand

- SV perturbations predominantly avoid shrinking of errors in convergent flow (red compared to gold)
- Fastest growing modes occur in divergent flow and are well covered by Breeding (light compared to dark blue)

DWD

Spread occurs in high northern & southern latitudes, where the flow is divergent and predictability is low.

Andreas Rhodin, Harald Anlauf, Jason Ambadan

DWD **Deutscher Wetterdienst** Wetter und Klima aus einer Hand

Singular Vector (SV) Perturbations activate fast growing modes. Which modes?

Baroclinic Instabilities

Tobias Selz, 2013

kinetic energy spectrum of control run (red) kinetic energy spectra of difference wind (blue)

The change of the diff. KE slope at large scales after 24h indicates error growth driven by baroclinic instability

How do we force baroclinic instabilities ?

DWC

J. BERNER, G. J. SHUTTS, M. LEUTBECHER AND T. N. PALMER, 2009: A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System. J. ATMOS. SCI., 66, 603-626.

Initial ensemble perturbations - basic concepts by Linus Magnusson 2012

SV

4-dVar Analysis error

BV

by 4D-Var

FIG. 2. The zonal average of initial perturbations and analysis error variance estimate in total energy. The mean over the period 1 Dec 2005–15 Jan 2006. The vertical axis is pressure (hPa) and the horizontal axis is latitude. The contour interval is 0.5 J kg⁻¹: (a) SV-EPS, BV-EPS (b) simple and (c) masked, and (d) error variance.

How do we force baroclinic instabilities ?

Deutscher Wetterdienst Wetter und Klima aus einer Hand

dissipation rate from deep convection

Shutts, 2005

Stochastic non-dynamical forcing pushes the model state away from its stable manifold ! \rightarrow perturbed model states lack dynamic consistency

 \mathbf{C}^{-1}

$$\mathbf{p} = \sum_{j=1}^{M} \alpha_j \cdot \mathbf{v}_j$$

- \mathbf{V}_{i} a set of leading singular vectors computed with the initial time metric
- α_j independent normally distributed random numbers with zero mean and unit variance

"A Gaussian distribution does not have compact support and occasionally the coefficients α can become so large that the resulting perturbations can trigger numerical instabilities in the integration."

• The standard deviation of the Gaussian for a set of singular vectors is set to

$$\sigma = \gamma / \overline{\kappa}$$

- $\overline{\kappa}$ average analysis error variance norm for the set of singular vectors, scaled by the **analysis error standard deviation**
- γ is determined empirically to yield adequate ensemble dispersion
- The sign of a singular vector is arbitrary \rightarrow pairs of perturbations ($\mathbf{x}_{+}, \mathbf{x}_{-}$) by sampling the coefficients α for \mathbf{x}_{+} and setting $\mathbf{x}_{-}=-\mathbf{x}_{+}$

$$\hat{\mathbf{F}}_{\Psi}(t) = \sum_{j=1}^{M} \alpha_j(t) \cdot \sqrt{\mathbf{D}_j(t)}$$

- \mathbf{D}_{i} a set of dissipation rates (e.g. deep convection, mountain wave drag, ...)
- backscatter ratio: random process which smoothly switches the forcing on $\alpha_{i}(t)$ and off

The perturbations can be added to the EnKF analysis ensemble

Shutts, 2005

DWD

Figure 3. Smoothed total 'dissipation rate' (a) comprising contributions from (b) horizontal diffusion, (c) gravity-wave/mountain drag and (d) deep convection

80"N 70"N 60"N 50"N 40"N

30°N 20°N

10"N

0* 10*S

20*5

30*8

40°S

70*5

Figure 4. Stream-function forcing pattern (F_{ψ}) at (a) level 47 (~1.7 km). Units are m²s⁻².

CELLULAR AUTOMATON

DWD

Figures 6 & 7: Even "runs at T799 show no sign of the k-5/3 spectral slope (left). With the backscatter scheme there is substantially more energy at smaller scales (right), and it could be argued that we are compensating for a model deficiency by injecting energy at the smallest resolvable scales."

What is the contribution of the cellular automaton spectral pattern generator ?

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Backscatter the **dissipated energy pattern** from deep convection by chance with some auto-correlation in time ?

- initially & during the forecast.

Try the same with

- gravity/mountain wave drag?
- numerical dissipation rate ?

Lagged Forecast Perturbation Patterns ("forecasters perspecitve") ... to see, if we can find other dynamically relevant processes that relate to model error

The following slights are optional

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Select or filter fastest growing perturbation patterns from lagged forecasts dynamically consistent perturbations

Lorenz63 Lagged Forecast Perturbation Experiment

Select the Perturbation with the largest instantaneous error growth rate

- 9 x lagged forecasts validating at initialisation time
- + 1 x inital random perturbation

10 possible perturbations

- The lag time is 0.1 →
- All forecasts are intialized by random perturbations \rightarrow

Lagged Forecast Perturbations

Deutscher Wetterdienst Wetter und Klima aus einer Hand

