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Data assimilation algorithm combine forecast and
observations to produce the best analysis
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Analysis systems are dependent on appropriate statistics for observation
and background errors.

Our goal: Best analysis for a prediction with the numerical model that we
are using.
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Ensemble Kalman filter methods:

Step 1: Update/Analysis
Combines prior information to obtain an estimate (analysis) wa

k of the
truth on discrete spatial grid and its error Ba

k .

Step 2: Resampling
The ensemble Kalman filter requires us to generate a number r of
ensemble members wa,i
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The inputs to the Kalman filter are:

I An initial state at time t0 and the corresponding covariance matrix
B0

I Observations yo
k and observational error covariance Rk at each

analysis time

I Covariance matrix of model error Qk

We do not need to specify the covariances matrices of background error
Bb

k . It is generated and propagated by the filter using full nonlinear
dynamics of the model.

Bb
k ≈

1

Nens − 1

Nens∑
i=1

[wb,i
k −wb

k ][wb,i
k −wb

k ]T .

However, we do need to specify Qk and Rk for all k as well as B0.
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Model error

One major contributor to the background error is model error.

Appropriate model error statistics for use in data assimilation algorithms
are not known.

What we consider model error:

I accuracy of numerical schemes

I unrepresented subgrid scale processes

I inaccurate forcing and boundary conditions

I representation of orography as well as parametrization uncertainty.





Model error

I Model error in DA is assumed to be additive.

I It is defined in the model space, i.e.

wr ,true = wr + q

I Usually q statistics prescribed (modelled)

I Errors are assumed to be

I white in time
I stationary
I without bias
I normally distributed.



In ensemble Kalman filter algorithms, full nonlinear numerical model is
used to propagate each analysis ensemble member wa,i

k .

Instead of only propagating the analysis ensemble to obtain the new
forecast ensemble, model error qi

k can be added to:

wb,i
k+1 = Mk+1 ,k(wa,i

k ) + qi
k+1

where qi
k will be a sample randomly drawn using model error covariance

matrix Qk .

This is done at analysis times!



I In case nothing is done about it, the observations even for linear
system might degrade the analysis (Dee 1995):











Observation error

εok consists of measurement error and representativeness error. It can be
divided into three parts:

εok = ε′k + ε′′k + εmk

where

ε′k ≡ Hc
kw(·, tk)−Hc

kΠw(·, tk)

= Hc
k(I−Π)w(·, tk)

ε′k – will be called error due to unresolved scales.

ε′′k ≡ Hc
kΠw(·, tk)−HkΠw(·, tk)

= [Hc
k −Hk ]Πw(·, tk)

ε′′k – will be called forward interpolation error .



Representativeness error (Lorenc 1986; Daley 1993; Cohn
1997)

I representativeness error introduces spatial correlations in the
observational error

I and it is state and time dependent (Janjic 2001, Janjic and Cohn
2006)

I difficult to estimate

I important for optimal use of observations, since it tell us how
observations are to be provided to best adopt to model resolution

I for variable model resolutions needs to be scale adaptive

I it depends on the observation type

I Example: for 40× 40 km Radiosonde/Dropsonde wind observation,
observational error < 0.5 m/s and Assigned error: 2− 3 m/s
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Data assimilation approach for dealing with observation
and model error statistics

I parametrize the covariances Q = VQ(α)V and estimate missing
parameters from observation minus forecast statistics (Dee 1995,
Dee and Arlindo 1997) vk = wo

k − H(w), which are assumed
HPfHT + R

I or from two observing system (Dee and Arlindo 1997) that
simultaneously measure the same quantity.

I similar for the observation error statistics (Desrozier et al. 2005)

I or Jung et al. MWR 2012 for assimilation of radar data during
forecast perturb shape parameters in the ensemble plus
multiplicative and additive inflation (every 5 min u, v , θ perturbed
with noise). Noise had std 0.5, 0.5, 0.5 with SM scheme and with
DM 0.75,0.75,0.75.



Example: representativeness error
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Initial state Left: The state w r (λ, ϕ, t) which is being estimated.
Right: The full state w(λ, ϕ, t) from which the
observations are taken.
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Conclusion

I Data assimilation algorithms require us to specify the statistical
properties of the observation and model error.

I Both of these errors depend on the state of the atmosphere.

I Since we are searching for the best estimate for the scales that our
model can represent,

I the unresolved scales are part of the model error as well as
observation error.

I Not include them can have a significant impact on accuracy of the
analysis.


