LES simulations with ICON:

the $\mathrm{HD}(\mathrm{CP})^{2}$ project

Daniel Klocke

- German wide BMBF funded project.
- $\quad \mathrm{HD}(\mathrm{CP}) \mathbf{2}$ will strive to build and use a model capable of very high-resolution simulations.
- Horizontal grid spacing of 100 m over domains of 1000km, offers the possibility to leap over the so-called grey-zone encompassing most of the scales of parameterized physics.
- Semi-empirical basis for advancing parameterization development.
- Three modules:
- Model development
- Observations
- Synthesis

HDCP2 domains

3D Turbulence scheme:

- Classical Smagorinsky turbulence with stability correction due to Lilly 1962.
- Fully 3D.
- Horizontal momentum diffusion is applied on VN (edge normal velocity) and not on U and V like the existing turbulence scheme.
- Vertical momentum is diffused through W.
- Temperature diffusion is applied on potential temperature.
- Tracer diffusion is performed on QV and QC, but others can be included.

Idealized case of cloud topped boundary layer:

	08 hrs
$-\cdots---$	16 hrs
$\ldots \ldots \ldots$.	24 hrs

Turbulence scheme - issues:

- Preliminary runs with real initial and boundary conditions show that the scheme is unstable over topography.
- ... work is ongoing ..

Simulation setup

\rightarrow,Cologne': 220km radius, R2B10 - R2B15 (2.5km to 75m)
\rightarrow,Germany': 680km radius, R2B09 - R2B14 (5km to 156m)
\rightarrow Initialization with COSMO-DE (2.8km) at 00 from forecasts at lead time 0
\rightarrow Lateral boundary nudging with COSMO-DE (3 hourly data)
\rightarrow Extpar data (ASTER topography, GLOBCOVER land-use)
\rightarrow NWP physics, but no convection parameterization

HOPE as seen by ICON, driven by COSMO-DE

April 2013: initialized and nudged with COSMO-DE: Nudging is working properly!

HOPE as seen by COSMO-DE AN

Also 'free variables' look reasonable (different micro physics!)

HATRPO microwave radiometer

Observations
ICON-JL

Total column water vapor $\left[\mathrm{kg} \mathrm{m}^{-2}\right]$

Day in April 2013

Ceilometer

Observations
 ICON-JL

Day in April 2013
date $=20130408$

mean $=0.56 \mathrm{~mm}$

10E

ICON: 1250m resolution. Nudge boundaries are in the evaluation domain, hence some artifacts.

Overall: Good performance!
date $=20130409$

date $=20130410$

date $=20130411$

date $=20130412$

date $=20130409$

date $=20130409$

date $=20130409$

1250m
date $=20130409$

625m
date $=20130409$

312m
3d turbulence necessary!

Vertical velocity [m/s] at model level 22 ($\sim 6800 \mathrm{~m}$)

Horizontal diffusion becomes important!

$$
\text { date }=20130409
$$

4998m: with convection parameterization
date $=20130409$

$$
\text { date }=20130409
$$

4998m: long adjustment time scale in CAPE closure (3h)

$$
\text { date }=20130409
$$

4998m: only shallow convection

Conclusion:

- ICON is working reasonable in limited area mode.
- Initialization and nudging with COSMO-DE works fine.
- High resolution improves the forecasts.
- We are getting closer to doing the fun stuff...

Outlook:

- Make 3D turbulence work on realistic cases.
- Perform high resolution simulations as a benchmark for model development.
- Realistic and idealized
- Utilize HOPE observation data to build confidence in ICON-LES simulations.
- Quantify uncertainty in terms of the representation of convective processes.
- Improve the representation of convective processes.
- Also with the help of stochastic physics.

