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Motivations 

Motivation 1: improvement of the deterministic forecast 

• The model results are imperfect. 

• A non-negligible part of errors  

appears due to the imperfection  

of a model itself. 

• Some errors can be handled  

deterministically, but some cannot  

(i.e. from those parameterizations that would require almost infinite 

resolution, e.g. microphysics, soil, etc.) 

• They can be accounted for in a statistical way. 

Motivation 2:  

• The end-users should be provided with the information how 

reliable/uncertain the forecast is. 
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Motivation 3: estimation of  the background error 

• Most of the data assimilation systems  

represent an interpolation between  

the observations and the first guess  

to provide a new initial condition.  

 

• In KF, the weights for the  

interpolation between  

the observations and the model 

are inversely proportional to the  

corresponding uncertainties, or possible errors 

 

• An estimate of the model error is needed in order to give an appropriate 

weight to the first guess. If the model error is underestimated, this 

weight will be too large and less regard will be paid to the observations 

than should be. 

obs 

obs 
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Example of the solution (see Hasselmann, 1988) 

if there exist a clear time and space scale separation between resolved and 

unresolved processes (∆ >> δ) (= spectral gap!) 

Formulation of  the problem 

the cumulative effect of the random errors within each grid box may be 

represented by means of the Central Limit Theorem: 

sum of many independent identically distributed random variables is Gaussian 

→ the perturbations are the samples of the white noise process 

grid box grid box grid box ∆ 

δ 

Good for climate studies,  

but no spectral gap and independence for the variables in NWP 

Motivation            Problem formulation            Propagation in time            Error field construction            Outlook 



Formulation of  the problem 

q 

p 

r 

full set of modes (= nature) 

𝑝, 𝑞, 𝑟 − 

model variables 

𝑝, 𝑞 − 

𝑟 − unaccounted degree of freedom 
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Usually, the exact initial condition is not known. 
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Usually, the exact initial condition is not known. 

The lack of knowledge in the model variable’s plane (p,q) = 

the uncertainty in the model’s initial conditions. 



Formulation of  the problem 
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Usually, the exact initial condition is not known. 

The lack of knowledge in the model variable’s plane (p,q) = 

the uncertainty in the model’s initial conditions. 

The lack of knowledge in the unresolved mode r = 

the uncertainty in the model’s physics. 

𝑝, 𝑞, 𝑟 − 

full set of modes (= nature) 

𝑝, 𝑞 − 

model variables 

unaccounted degree of freedom 𝑟 − 



  

Propagation in time 

t 

(ensemble of) 

trajectories 

PDF(t) 

If a (small) part of the model is random, then the model state is a random 

variable evolving in time (= random process). This evolution may be 

represented as 

• evolution of the probability density function (PDF); 

• evolution of all statistical moments of the PDF; 

• evolution of all particular realizations of the random process. 
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Theoretically these ways are equivalent, but practically not necessarily.  

Which one to choose? 



  Example: the error due to the discretization of the advection process 

Consider a transport equation of a quantity f: 

 

 

Representing a quantity f as a sum of the ensemble average  

(≈ resolved flow) and fluctuations therefrom (≈ unresolved)                   , 

one arrives at an ensemble (≈ spatially) averaged equation 

 

 

 

 

with the second-order subgrid-scale contribution          subject to a 

parameterization scheme (= statistical model bias correction due to the 

interaction between resolved and unresolved flow). 
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Propagation in time 
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  From the governing equations for f and u the prognostic equations for all 

statistical moments can be derived, for example:  
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known requires  

assumptions 

neglected  

for the most part 

→ all NWP and climate models account already for a part of the model 

error stochastically:  

the error is the discretization error of the advection equations,  

it is accounted for through the estimation of the statistical moments. 

The parts of the model that do this work are called turbulence and 

convection parameterization schemes. 

Propagation in time 
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fiSu  - correlations between subgrid-scale fluctuations of wind velocity 

and latent heat releases (from microphysics), radiation fluxes, etc. 



  If an equation is more complex (the right-hand side includes terms that 

are highly non-linear, have thresholds, etc.), then the prognostic 

equations for the moments cannot be easily obtained, if at all. 

In this case it might be preferable to use other approaches, e.g. running 

an ensemble of realizations. 

→ The methods can be combined! 

,           (TKE)  

– spread     

Propagation in time 

−
𝑑

𝑑𝑧
𝑤′𝜃′ 𝜃′2 𝑢𝑖′𝑢𝑖′ 
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Two ways are already tried in various studies: 

• to derive the statistical properties of the model error from the 

available model data (≈ “top-down”) 

Statistical bias correction (e.g. Faller, 1975; Johansson & Saha,    

1989; Danforth & Kalnay, 2007; DelSole et al., 2008) 

Linear stochastic models (Nicolis et al., 1997; Achatz & 

Opsteegh, 2003; Berner, 2005; Sardeshmukh & Sura, 2009) 

 

• to think about “what can be uncertain and be the main source of 

errors and thus perturbed” (≈ “bottom-up”) 

(Randall & Huffman, 1980; Majda & Khouider et al., 2002; Lin 

& Neelin et al., 2002; Craig & Cohen, 2006) 

How to construct the model error 
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From the model data: 

 

 The entire error is accounted for 

by construction 

 

 Restricted applicability: 

parameters of the random 

processes are fitted to certain 

regimes, model version, region 

etc.  

Artificial dependencies can   

appear. Insufficient physical 

background. 

How to construct the model error 

“What should be perturbed”: 

 

 The choice of the perturbed 

variables is physically based 

 

 There is no answer to the 

questions “How it should be 

perturbed?”, “How large is an 

uncertainty of what is known to be 

uncertain?”  

Final results may not well 

represent the sought model error 

field. Danger of double-counting 

of the errors. 

A golden mean is needed 
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Approximate the parameters  

a, b, γ, σa and σb by means of 

the data 

 

 

 

 

 

 

 

 

 

 

Short perspective 

use the approach 1 (construct the properties of the model error from the 

computed data) 

How to construct the model error 

Take “forecast–analysis” as a 

proxy to the model error 

Decrease the dimensionality of 

the phase space –  

determine the leading patterns 

of the model error 

(spatial correlations are 

accounted for) 

Assume the form of how the 

model error enters the 

governing equations: 

 

 

  

Assume the form of the 

model error equation: 

 
 

 

          damping             noise 

        (time corr.)      (ξ ~ N(0,1)) 

𝜕𝑋

𝜕𝑡
= −𝛾𝑋 + (𝜎𝑎 + 𝜎𝑏𝑋)𝜉(𝑡) 

𝜕𝑌

𝜕𝑡
=
𝜕𝑌

𝜕𝑡
𝑚𝑜𝑑𝑒𝑙

+ (𝑎 + 𝑏𝑌)𝑋(𝑡) 
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Lorenz’96 system (Lorenz 1996) 

𝑑𝑋𝑘
𝑑𝑡
= −𝑋𝑘−1 𝑋𝑘−2 − 𝑋𝑘+1 − 𝑋𝑘 + 

+𝐹 −
ℎ𝑐

𝑏
 𝑌𝑗

𝑘𝐽

𝑗=𝐽 𝑘−1 +1

 

𝑑𝑌𝑗
𝑑𝑡
= −𝑐𝑏𝑌𝑗+1 𝑌𝑗+2 − 𝑌𝑗−1 − 𝑐𝑌𝑗 + 

+
ℎ𝑐

𝑏
𝑋𝑖𝑛𝑡 (𝑗−1)/𝐽 +1 

How to construct the model error 
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Xk – slow variables 

Yj – fast variables 

h, c, b, F – parameters 



𝑑𝑋𝑘
𝑑𝑡
= −𝑋𝑘−1 𝑋𝑘−2 − 𝑋𝑘+1 − 𝑋𝑘 + 𝐹 +𝑀𝐸𝑘 

How to construct the model error 
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𝑀𝐸𝑘 = 0  
(no SGS contribution) 

 

𝑀𝐸𝑘 = 𝐴 (constant) 
 
𝑀𝐸𝑘 = 𝐴 + 𝐵𝑗𝑘𝑋𝑗  
(flow dependent,  
deterministic) 
 
𝑀𝐸𝑘 = 𝐴 + 𝐵𝑗𝑘𝑋𝑗 + 𝑎 + 𝑏𝑗𝑋𝑗 𝑔𝑖𝑘𝜂𝑖, 

  
𝑑𝜂𝑖

𝑑𝑡
= −𝛾𝑖𝜂𝑖 + 𝜎𝑎 + 𝜎𝑏𝑋 𝜉𝑖  𝑡 ,    𝜉𝑖~𝑁(0,1)   

𝑔𝑖𝑘 – coefficients of POPS decomposition 

- - - -  spread 



(e.g. z can be the set of Fourier components of a solution of the equation 

prior to the discretization procedure) 

For each value of x there is an 

ensemble of values of the unresolved 

degrees of freedom y 

→ in the equation for x modes  

the term f ru
 (x,y,t) may be represented  

by an appropriate random process ξ: 

z – full set of modes (= nature) 

Let us regard x as a set of resolved components (= model variables) 

and y as a set of unresolved components. 

𝑑𝒙

𝑑𝑡
= 𝑓𝑟𝑟 𝒙, 𝑡 + 𝑓𝑟𝑢 (𝒙, 𝒚, 𝑡) 

𝒛 = 𝒙, 𝒚  

𝑑𝒚

𝑑𝑡
= 𝑓𝑢𝑟 𝒙, 𝒚, 𝑡 + 𝑓𝑢𝑢(𝒚, 𝑡) 

𝑑𝒙

𝑑𝑡
= 𝑓𝑟𝑟 𝒙, 𝑡 + 𝜉(𝒙, 𝑡) 

How to construct the model error 
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See also Kraichnan, 1988; Lindenberg & West, 1984 

“Appropriate” means: 

the properties of ξ should not be arbitrary, but consistent with the 

properties of 𝑓𝑟𝑢, 𝑓𝑢𝑟 and 𝑓𝑢𝑢! 

Systematic stochastic mode reduction (Majda et al., 2001): 

• the interaction 𝑓𝑢𝑢 is the fastest one among 𝑓𝑟𝑟 , 𝑓𝑟𝑢, 𝑓𝑢𝑟 and 𝑓𝑢𝑢 

• replace the fastest interaction terms 𝑓𝑢𝑢 with a random process 

• the equations 
𝑑𝒚

𝑑𝑡
=… for the unresolved components become stochastic 

• technics are being developed how to eliminate the unresolved variables 

in the equations for the resolved variables  

How to construct the model error 
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How to construct the model error 
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𝑑𝑌𝑗
𝑑𝑡
= −𝑐𝑏𝑌𝑗+1 𝑌𝑗+2 − 𝑌𝑗−1 − 𝑐𝑌𝑗 +

ℎ𝑐

𝑏
𝑋𝑛𝑒𝑎𝑟 

−𝛾𝑗𝑌𝑗 + 𝜎𝑗𝜉𝑗  𝑡  

𝑌𝑗 = 𝑌𝑗0𝑒
−𝑐𝛽𝑗𝑡 +

ℎ

𝑏𝛽𝑗
 𝑋𝑛𝑒𝑎𝑟(𝜏)𝑒

−𝑐𝛽𝑗(𝑡−𝜏)𝑑𝜏

𝑡

0

+
𝑏𝜎𝑗
𝛽𝑗
 𝑒−𝑐𝛽𝑗(𝑡−𝜏)𝑑𝑊

𝑡

0

 

the fastest terms –  

interactions between unresolved 

Solution 

𝛽𝑗 = 𝑏𝛾𝑗 + 1 where                      ,    W – Wiener process 

Memoryless approximation  𝑋𝑛𝑒𝑎𝑟(𝜏)𝑒
−𝑐𝛽𝑗(𝑡−𝜏)𝑑𝜏

𝑡

0

≈ 𝑋𝑛𝑒𝑎𝑟(𝑡) 

 𝑒−𝑐𝛽𝑗(𝑡−𝜏)𝑑𝑊

𝑡

0

≈ 𝜉𝑗  (𝑡) 

Lorenz’96 system  

random process 



How to construct the model error 
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𝑑𝑋𝑘
𝑑𝑡
= −𝑋𝑘−1 𝑋𝑘−2 − 𝑋𝑘+1 − 𝑋𝑘 1 +

ℎ2𝑐

𝑏2
 

1

𝛽𝑗

𝑘𝐽

𝑗=𝐽 𝑘−1 +1

+ 𝐹

−
ℎ𝑐

𝑏
 𝑌𝑗0𝑒

−𝑐𝛽𝑗𝑡

𝑘𝐽

𝑗=𝐽 𝑘−1 +1

− ℎ𝑐  
𝜎𝑗

𝛽𝑗
𝜉𝑗  (𝑡) 

𝑘𝐽

𝑗=𝐽 𝑘−1 +1

 

𝑌𝑗(𝑡) = 𝑌𝑗0𝑒
−𝑐𝛽𝑗𝑡 +

ℎ

𝑏𝛽𝑗
𝑋𝑛𝑒𝑎𝑟(𝑡) +

𝑏𝜎𝑗

𝛽𝑗
𝜉𝑗  (𝑡) 

→  Solution for Y 

Inserting into the equations for X 



How to construct the model error 
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- - - -  spread 

Stochastic mode elimination  

for the Lorenz’96 system: results 

Error histograms: 

upper panel – without SGS 

lower panel – stoch. SGS 
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Outlook 

 Implementation and testing of the approach 1 in the 
COSMO-DE/ICON 

 Is it possible to determine the errors from different 
physical parameterizations separately? (Discretization 
errors at least.) 

 If yes, implementation and testing of the approach 1 
for each parameterization separately 

 Development of a more consistent approach 
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Thank you for your attention! 

Thanks to Dmitrii Mironov and Bodo Ritter for fruitful discussions!    


