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Ensemble Data Assimilation Algorithms

Based on the Ensemble Kalman Filter Algorithm (as to be used at DWD)
the role of model and observational error will be discussed.

There are other approaches as running independent assimilation systems
with perturbed observations (4D-Var, ECMWF). The role of model and
observational error remains the same.
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Algorithm: KF – Kalman Filter
Data Assimilation:

Provide ”optimal” initial state and information on its uncertainty.
From observations o , previous forecasts x(b) (and their uncertainties)

(Extended) Kalman Filter:

For a linear system M and Gaussian errors the KF provides the exact
pdf (error covariance matrix P) for forecast(b) and analysis(a).
For a nonlinear system M (Extended KF) this holds approximately.

Model state x Error Covariances P

Forecast x(b) =M(x(a)) P(b) = MP(a)MT + Q

Analysis x(a) = x(b) + K(o−Hx(b)) P(a) = (I−KH)P(b)

with K = P(b)Ht(HP(b)Ht + R)−1

The KF requires specification of
model and observation error covariances Q, R.

P(a) is not prescribed but depends on Q, R, observation coverage
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Algorithm: EnKF – Ensemble Kalman Filter

The KF is not applicable to large problems.
I MP(a)MT + Q requires O(N) integrations

of the tangent linear Model M.
(N = number of degrees of freedom of the model)

EnKF: Probabilistic approach:

I approximate P(b) and P(a) by ensembles of model states x
(b)
i , x

(a)
i :

P(b) = X(b)X(b) T

X(b) = vector of ensemble deviations from the mean.
I approach requires L integrations of the nonlinear model:

x
(b)
i =M(x

(a)
i ) + q.

i = 1 . . . L (L =ensemble size).
I error in P(b) scales with 1/

√
L.

I requires representation of model error covariances Q
by a stochastic process q.
(with reasonable amplitude, flow dependence, correlation length scales)
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Error Covariances

The EnKF requires suitable ensemble forecast covariances P(b)

(both variances and correlations).

DA systems rely on forecast error (cross-)correlations to update
unobserved variables.
Example: slide 2

I The ensemble must be of sufficient size to provide correlations with
statistical significance (40 . . . 200).

I q should have reasonable characteristics:
F flow dependence
F amplitute
F spatial correlations
F temporal correlations

Currently a simple approach is used for representing q
I Statistical noise consistent with the balance conditions of the 3D-Var

P(b) matrix: qi = P
(b)
3dvar

1/2
εi

I Inflation: X→ γX, γ > 1.
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Summary: Stochastic Representation of Model Error

Current DA schemes aim to model
the flow dependent evolution of forecast errors
in order to use it in the analysis step.

Key ingredients are observational errorrs R and model errors Q.

Due to the size of the problem we have to use ensemble methods

Ensemble DA algorithms require a stochastic process q
to represent Q.
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EnKF at DWD
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Purpose of the Ensemble Data Assimilation System

Provide an optimal analysis
I Uses flow dependent B to cycled DA system
I Requires reasonable spread/skill relationship
I Requires reasonable cross-correlations
I Requires ensemble size of O(40 . . . 200)
I Requires reasonable model error representation

Provide BC for local area model

Provide initial conditions for ensemble prediction system
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LETKF setup for ICON and COSMO
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ICON/GME:

High resolution deterministic
analysis (currently 3D-Var)

Low resolution ensemble analysis
(currently LETKF)

I First guess calculated in the
analysis scheme

COSMO:

Convection resolving ensemble
analysis (4D-LETKF)

I First guess at appropriate
time calculated in the model

(Not shown:) Deterministic
analysis using LETKF gain matrix
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GME/ICON EnKF – Currently: 3D-Var + LETKF
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GME/ICON EnKF – Under development: VarEnKF
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Model error approaches currently used

GME/ICON COSMO/KENDA

(adaptive) inflation X X
additive 3D-Var B X

SPPT X(1)

SKEB X(2) X

(1) Recently implemented in COSMO, cf. talk of Lucio Torrisi

(2) Implemented in GME by Jaison Ambadan
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Some Preliminary Results
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additive 3D-Var B (GME LETKF)
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Verification of Ensemble Mean (vs. operational analysis)

DTF=3D-Var ENF=LETKF line=RMSE broken=SPREAD
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Verification of Ensemble Mean (vs. its own analysis)

DTF=3D-Var ENF=LETKF line=RMSE broken=SPREAD
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Background Ensemble SPREAD
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Background Ensemble Mean RMSE (vs.operational analysis)
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Known Deficiencies, Ongoing Calibration

LETKF Ensemble vs. 3D-Var Routine

RMSE generally larger until 24 h

Comparable or better > 48 h

Known Deficiencies

Spread generally too small

.. much too small in well observed areas

RMSE too large at model top

Humidity bias

Calibration

adjust inflation, localisation, model & observational error

use adaptive methods
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Soil Moisture – 2m Temperature Correlations

Soil moisture (and soil moisture spread) is not analysed/updated in
the EnKF so far.

spread of the (unobserved) soil moisture and correlations with 2m
tenperature are reasonable, caused by interaction with the
atmosphere.

correlations with 2m temperature may be utilized for soil moisture
assimilation
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2m Temperature – Soil Moisture Correlations at 12 UT
(Perspective for SMA in the EnKF framework)
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12 UT 2m mean temperature and correlation with 24 UT 18cm soil moisture
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2m Temperature – Soil Moisture Correlations at 24 UT
(Perspective for SMA in the EnKF framework)
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24 UT 2m mean temperature and correlation with 24 UT 18cm soil moisture
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SKEB in GME

SKEB scheme implemented in GME (J. Ambadan)

improved scores in GME ensemble prediction

no benefit in the assimilation cycle so far
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SKEB in GME

GME Kinetic Energy Spectrum (J.Ambadan)
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SKEB in GME

Normalized RMSE differences for various configurations of SKEP

compared to deterministic forecast
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Adaptive inflation in COSMO

lack of spread is (partly) due to model error which is not accounted
for so far

there may be are other causes for lack of spread:
I insufficient ensemble size
I inappropriate localisation radius
I inappropriate observation error and correlations

one (simple) method to increase spread is multiplicative covariance
inflation:

I Xens → ρXens with ρ > 1.

adaptive method to estimate ρ preferable
two methods have been used:

I Desroziers et al.: Compare observed statistics with expected ones:
〈(y − H(xb))(y − H(xb))T 〉 = R + ρHPbHT

I relaxaxation to prior spread (RTPS):

ρ =
√
ασb−σa

σa
+ 1, α > 1
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Adaptive inflation in COSMO

Inflation factors estimated by Desroziers method (left) or RTPS right.
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