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A few reasons for stochastic parameterizations
è Ensemble spread in convective-scale NWP, e.g., for DWD‘s COSMO-DE EPS 

at 2-3 km grid spacing.

è Scale adaptivity for models with varying mesh size, e.g., the new ICON model 
of DWD and MPI-M.

è Parameterization problems like non-equilibrium behavior of convection, self-
organization, lack of scale separation etc.



Shallow convection 
è Shallow convection is important due to 

it contribution to cloud cover, vertical 
moisture transport and, in some 
regions, surface precipitation.

è The trades are the natural and ideal 
environment for shallow convection.

è But they are also important in mid-
latitudes, e.g., in post-frontal situations

è Shallow convection (including 
congestus) can prepare the 
environment for deeper modes of 
convection.

(Picture by Bjorn Stevens)



Mesoscale cloud patterns 
   of trade wind cumulus

were found to be producing significant precipitation
appeared to be associated with shallow cumulus clusters
aligned in arc-shaped formations reminiscent of cold-
pool outflows documented in many studies of deep
tropospheric convection (e.g., Tompkins 2001). The
clouds along these arcs, as shown Figs. 16c and 5a,
typically extended no higher than the freezing level (;5
km) and were often shallower. Tompkins (2001) re-
ported that the role of propagating cold pools was im-
portant to the spatial organization of tropical deep
convection. This conclusion appears to translate to the
shallow precipitating clouds observed during RICO,
including remnant thin clouds at the center of the cold
pool (cf. Fig. 14 of Tompkins 2001).

8. Conclusions

In this paper, characteristics of trade wind clouds and
precipitation were investigated using S-band radar and
aircraft data from the Rain in Cumulus over the Ocean
field campaign and high-resolution satellite data from
the Multiangle Imaging Spectroradiometer. The nine
major findings of this study are as follows:

1) AZ–R relationship was derived and found to be Z5
88.0R1.50. The Z–R relationship from RICO pro-
vided an estimate of total project precipitation that
was 18% higher than if calculated using the Stout
and Mueller (1968) relationship from data in ‘‘trade
wind showers’’ collected in the Marshall Islands.

FIG. 15. The average rainfall rate as a function of cloud-top
height for pixels with detectable rainfall rates ($7 dBZ), shown by
the left-hand bar graph. The numbers to the right of the bars are
the standard deviation. The bins are 500m thick, beginning at 250m.
The number of pixels included in the average is shown by the right-
hand bar graph.

FIG. 16. Typical cloud mesoscale organization: (a) wind-parallel
cloud streets, (b) small cumulus clusters, and (c) cumulus clusters
along propagating cold pools.
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Typical cloud mesoscale organization: (a) wind-parallel cloud streets, (b) small cumulus clusters, 
and (c) cumulus clusters along propagating cold pools (from Snodgrass et al. 2009).

Can stochastic methods help to 
simulate such cloud regimes better?



Outline

èLarge-eddy simulation of precipitating shallow cumulus

èTracking of clouds and the cloud size distribution

èStochastic parameterization similiar to Plant-Craig

èThe problem of mesoscale organization

èParameterization of rain formation

èOutlook



LES of shallow convection

LES simulation can reproduce 
the observed features:

– clouds of various sizes which 
are randomly distributed in 
space

– thin ,high‘ clouds from 
convective outflow.

– cloud tops are well below 
3000 m height.

– precipitation rate stays below 
1 mm/day

Standard RICO case of Stevens and Seifert (2008) on a 25 m isotropic grid with 25 km domain 
size (1024x1024x160 grid points). See also Seifert and Heus (2013, Atmos. Chem. Phys.)



2D Cloud Tracking

• Object identification based 
on liquid water path.

• Connectivity in space and 
time.

• Splitting of large clouds 
based on active clouds 
cores (buoyant updrafts).
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4 Heus and Seifert: Tracking of shallow cumulus clouds

subcloud layer at some point in their life time, and to be at
least 4 cells big in space and/or time.

3.3 Cloud Splitting

A common issue in cloud tracking (see, e.g., DA12 and Heus
et al., 2009) is that cloudy objects tend to interact with other
clouds, while largely keeping their own properties. Connect-
ing these clouds into one big cloud system would negate the
point of doing lifecycle studies. These collisions are more
likely to happen for 2D tracking than for 3D tracking, since
overlapping, non-touching, cloud layers would be counted as
a collision. Therefore, a cloud splitting algorithm is neces-
sary. Our algorithm is conceptually similar to the one pre-
sented by DA12, but different in implementation because of
the 2D tracking.

We start with tracking not only the clouds, but also the
cloud cores, defined as columns where the maximum in-
cloud θv excess is over some threshold, chosen to be 0.5 K.
To eliminate noise around this threshold, we also require that
the core regions have at least one cell in the lower half of the
cloud layer, and that they are at least 4 cells large (in space
and/or time).

Clouds that contain no cores are passive clouds and do not
need any splitting. Clouds that contain exactly one core are
active, but isolated pulse clouds and also do not need any
splitting. If a cloud (system) contains more than one core,
we follow the splitting algorithm as schematically depicted in
Fig. 2 for a system with 2 cores, the dark red and green areas
in Fig. 2a. This is performed by the region growing subrou-
tine in Fig. 1. We allow these cores to grow incrementally
into the surrounding cloud area that has not yet been taken
by another core (Fig. 2b). This region growing happens in
space as well as time. Since the larger cores (such as the red
core in Fig. 2) have a larger circumference, they have more
points participating in this region growing, and are therefore
expected to pick up a larger part of the cloud. To limit the ef-
fects of fresh cores growing under an outflow remnant of an
older cloud, region growing is only allowed if the increase in
cloud base between two cloudy points is smaller than 300 m.
The amount of iterations is limited proportional to the area
of the original core, although this rarely is a limiting factor.
The region growing continues until no core has any iterations
left, or until all possible growing paths are covered (Fig. 2c).
Finally, the parts of the cloud that has not been covered, is
either allocated to its neighboring core if there is only one
connecting core, or is left as a separate remnant cloud if mul-
tiple cores are connected to the region (Fig. 2d). The regions
that are allocated to a specific core are now pulses within a
multi-pulse system.

3.4 Performance

Although tracking can in principle be done on-line, during
the actual LES simulation, the spatial parallelization of the

a)

d)

c)

b)

Fig. 2. Schematic representation of the cloud splitting. A cloud
(panel a; the blue area, solid line) with multiple distinct cores (the
red and green areas in the top panel, dashed lines), is divided be-
tween the two cores by letting the regions grow (the lighter red and
green regions in panels b and c). Sudden increases in local cloud
base are avoided. The remaining cloud (the blue parts in panel c)
are assigned to their respective cores if no other core connects to
these areas, or are treated as separate remnants if multiple cores are
connected to them (the blue area in panel d). Actual splitting occurs
in three dimensions (x, y and t) instead the depicted two. The fig-
ure displays the cloud splitting in two dimensions out of x,y, and
t; the algorithm works similarly in the third dimension. For further
details, see the text.

code and the requirement that the entire life time of each
cloud needs to be considered simultaneously, yields practi-
cal implementation issues, and concerns with the load bal-

Find cloud cores within 
the cloud

.. successive 
region growing

.. successive 
region growing

... some part might be 
left over as „remnant“ 
because the jump in 
cloud base is too large.
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Towards a stochastic cloud scheme

To derive a stochastic cloud parameterization we start from the cloud size distribution. 
Here             is a scalar cloud size defined as the square root of the projected area.

From these distributions we can calculate the cloud cover, the total number of clouds 
or the cloud number rate:
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in the size range [!, !+ d!]

n(!, t)d!

g(!m, t)d!mdt Number of clouds generated in the time interval  
with a maximum dimension during the lifetime in the size 
range [!, !+ d!]

N(t) =

∫
∞

0

n(!, t)d!C(t) =

∫
∞

0

!2n(!, t)d!

Ng(t1, t2) =

∫ t2

t1

∫
∞

0

g(!, t)d!dt



Cloud size distributions

• Instantaneous cloud size distribution 
shows power law behavior. This agrees 
well with satellite observations.

8 Heus and Seifert: Tracking of shallow cumulus clouds

Fig. 5. The same projection of the cloud field as Fig. 4, but with

the color depicting the type of cloud: Magenta clouds are passive,

black clouds are single pulse clouds, blue clouds are remnants of

the red active multi-cell clouds.

Fig. 6. Size distribution averaged over the entire simulation for

clouds, thermals and rain.

passive clouds driven by gravity waves can occur at any level

in the cloud layer, and outflow remnants of larger cloud sys-

tems dominate the distribution at higher altitude, including

above the cloud layer inversion.

As can be expected from the cloud volume and cloud base

distributions, the cloud top distribution shows a maximum

close to LCL for the small passive clouds, and the remnants

Fig. 7. Cloud size distribution after tracking. Solid lines are the

averages over 8 h intervals, dashed lines are the best power law fit

to the data between 300 m and 800 m, with a respective slope given

in the legend.

Fig. 8. Cloud size distribution without tracking. Solid lines are the

averages over 8 hour intervals, dashed lines are the best power law

fit to the data between 300 m and 800 m, with a respective slope

given in the legend.

have a cloud top height distribution that largely coincides

with its minimum cloud base height distribution, especially

for the levels that can be associated with outflow from the

large systems. For the highest clouds, the distribution of the

remnants collapses with the distribution of the active parts of

the cloud systems. These multi pulse clouds show a tendency

to become somewhat bigger than the single pulse clouds, and

only the multi pulse clouds grow deep enough to contribute

to the growth of the cloud layer through entrainment of free

tropospheric air. However, both single pulse and multi pulse

• Generating cloud size distribution 
reveals exponential behavior 
consistent with results of Craig 
and Cohen (2006).



LES-based empirical relations
From the cloud tracking we get the necessary information like the cloud size distribution, cloud lifetime etc.:

cloud size distribution or cloud number rate                  cloud lifetime as a function of cloud size



Microscopic stochastic parameterization

Stochastic model framework
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What is the problem with convection 
parameterization in high resolution models?
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A large grid box contains many clouds, i.e., 
the full PDF:

a small grid box may contain only a few 
clouds:
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As in the Plant-Craig stochastic convection 
scheme we define the PDF based on large-scale 
variables and sample the PDF in the small-scale 
grid box assuming a Poisson process:



For the double-exponential we find reasonably simple analytic relations between 
the ensemble mean ,bulk‘ quantities and the parameters of the distribution, e.g.,

Here the cloud lifetime is parameterized as a function of cloud mass flux by

Double-exponential distribution

After substitution of (9) into (8) and integration we

get an expression for the ensemble mean number of

clouds:

�N� = ṄαΓ(β + 1)�m�β (10)

The ensemble mean cloud fraction �C� is by defi-

nition:

�C� =
∞�

0

�l2(m)��n(m�)�dm (11)

where l is the cloud size just above the cloud base

(700 m level), defined as a square root of cloud area

following the definition for the projected cloud size

from Neggers (2003). From the definition of mass

flux follows: l2 = m/(ρw) and we assume that the

density equals ρ = 1 kg/m
3
.

Assuming the relation between the instantaneous

and the generating rate mass flux distribution (6),

we have:

�C� ≈
∞�

0

�l2(m)��τ(m)��g(m)�dm (12)

After substitution and integration, we get

�C� = α

wρ
ṄΓ(β + 2)�m�(β+1)

(13)

Defining the ensemble average cloud life time as

�τ� = αΓ(β + 1)�m�β (14)

and substituting it into the equation for the ensem-

ble average of total number of clouds (10) we get

�N� = Ṅ�τ�. So (13) becomes:

�C� = β + 1

wρ
�N��m� (15)

with parameter β estimated from the empirical data

for the entire cloud ensemble (9), and w being the

average cloud vertical velocity of the cloud ensem-

ble.

ii. Mixed exponential function as an approxi-
mation for the generating rate mass flux distribu-
tion: Looking at the mass flux distribution with

the split into active group of clouds and passive

and forced clouds contribution (Fig. 7) we can no-

tice two different modes, that could be represented

with the mixture of two exponential functions. Di-

viding the cloud ensemble mass fluxes into two

groups: forced and passive clouds, mode (1) and

active clouds, mode (2) the complete distribution

can be described by a mixture of two exponential

distribution functions:

g(m) = Ṅ1
1

�m1�
e
− m

�m1� + Ṅ2
1

�m2�
e
− m

�m2� (16)

with parameters �m1� and �m2�, which are the

mean mass fluxes per cloud for first and the sec-

ond mode, and the cloud generating rates Ṅ1 for

passive and forced clouds and Ṅ2 for active clouds.

Following the same procedure as for the single ex-

ponential function, the ensemble average number

of clouds is defined as:

�N� = αΓ(β + 1)
�
Ṅ1�m1�β + Ṅ2�m2�β

�
(17)

Parameters α and β for the total cloud ensemble

are obtained from the non-linear least square fit for

the joint distribution of the cloud mass fluxes and

cloud life times (Fig. 8). We use the same power

law relation (9) for the two cloud groups.

Figure 9: Scatter plot of the average cloud mass flux

(kg/s) and the cloud life time (h) from the LES RICO

GCSS case (12-18h of simulation). Two separate cloud

groups are shown in red (active clouds) and blue (forced

and passive clouds) colors. Power-law fit (9) is plotted

in dotted line.

The ensemble average cloud fraction relation be-

comes the sum of the contribution of the two dif-

ferent cloud groups:

10
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Following the same procedure as for the single ex-

ponential function, the ensemble average number

of clouds is defined as:

�N� = αΓ(β + 1)
�
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�C� = β + 1

w1ρ
�N1��m1�+

β + 1

w2ρ
�N2��m2� (18)

iii. The gamma function as an approximation for
the generating rate mass flux distribution: To test

how the introduction of one more parameter to the

distribution function will improve the results com-

pared to a one parameter exponential function, we

formulate the model using the gamma distribution

function for the generating rate mass flux distribu-

tion:

g(m) = Ṅ
1

θk
1

Γ(k)
mk−1e−

m
θ (19)

Now the two parameters are the scale θ and the

shape k of the distribution, with the relation to the

average mass flux per cloud given by the distribu-

tion expected value: �m� = k · θ.

In a similar manner as for the exponential distri-

bution, we derive the expression for the ensemble

average number of clouds:

�N� = Ṅαθβ
Γ(β + k)

Γ(k)
, (20)

and the ensemble average cloud fraction:

�C� = �N�
wρ

�m�
k

(β + k). (21)

iv. The log-normal function as an approxima-
tion for the generating rate mass flux distribution:
For the purpose of testing the model sensitivity to

the choice of the distribution function, we also ap-

proximate the generating rate cloud mass flux dis-

tribution of a full ensemble of clouds with a log-

normal distribution function. Choice for the log-

normal distribution function comes from its prop-

erty to describe well the long tailed distributions,

and in our case the fit to the empirical data shows a

good agreement (Fig. 3b).

In the case of the log-normal distribution, the gen-

erating rate distribution of cloud mass fluxes is:

g(m) =
�Ṅ�

mσ
√
2π

e
− 1

2

�
ln(m)−µ

σ

�2

(22)

with the parameters µ and σ being the mean and

the standard deviation of log(m). Relation to the

mean mass flux per cloud (the expected value of

the distribution) is �m� = eµ+
σ2

2 .

The ensemble average number of clouds is defined

as:

�N� = Ṅαeβµ+
β2σ2

2 , (23)

and the ensemble mean cloud cover as:

�C� = �N�
wρ

�m�eβσ2
. (24)

c. Cloud life cycle and cloud size

Cloud life time of each individual cloud is param-

eterized upon its initialization as a function of the

cloud mass flux using the relation (9).

Having the average mass flux of each cloud in a

model grid box, an idealized cloud life cycle is as-

signed to each cloud following the generalized life

cycle fit function:

m�

m
=

3

2

����4 ·
t

τ

�
t

τ
− 1

�����
δ

(25)

Cloud mass flux of each cloud at each time step m�

is normalized by the life time average cloud mass

flux m and is changing according to (25) as a func-

tion of normalized cloud time t/τ . Exponent δ is

used as the fine calibration parameter in a model.

5 Numerical solver

The stochastic toy model code is written in For-

tran90 language and consists of the main program

stochastic as the model core and a module clouds
where the functions and sub-programs are coded.

A diagram of the model is shown on the Fig. 10.

Model input parameters are specified in the first

section of the main program and are listed in the

Table 3.

a. generation of new clouds

A number of new clouds is generated in each grid

box of the model, at each time step as a single ran-

dom deviate from the Poisson distribution. To gen-

erate the Poisson random deviate we are using the

code from RANLIB Library of Fortran Routines

for Random Number Generation (Brown and Lo-

vato, ??) translated to Fortran90 by Miller (). In
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Table 2: Contribution of different cloud types to the

vertical mass flux, cloud number and cloud size in the

LES RICO GCSS case (12-18h of simulation); time av-

eraged number of clouds and cloud properties from the

instantaneous cloud fields in a domain

instantaneous: active forced/passive total

�N�proj (#) 184.55 811.27 995.81

�N�700m (#) 147.01 290.66 437.67

r�N�proj (%) 18.53 81.47 100

r�N�700m (%) 33.59 66.41 100

r�M�700m (%) 68.16 31.84 100

r�L�700m (%) 58.89 41.11 100

r�L� (%) 58.05 41.94 100

Figure 7: Empirical LES RICO GCSS case (12-18h of

simulation) distributions of the life time average cloud

mass flux on the semi-log plot, with the split into active

(red) and forced (blue) clouds contribution.

bution �n(m�, t)� and gives us the information nec-

essary to reconstruct the life cycle of each cloud,

during its life time τ in the stochastic model. Num-

ber of clouds that exist at time t with the instan-

taneous mass fluxes in the range [m�,m� + dm�]
is given by the n(m�, t)dm�

, while the number of

clouds generated in the interval [t, t + dt] with the

cloud lifetime average mass fluxes in the range

[m,m + dm] is given by g(m, t)dmdt. For the

relation between the two distributions we assume

that:

�g(m)� ≈ �n(m�)�
�τ(m)� (6)

ignoring the time dependence.

Since an important principle of every parameteri-

zation is to keep it simple, we approach the formu-

lation of the model by approximating the generat-

ing rate cloud mass flux distribution with a single

exponential function. For each initialized cloud in

the model, the cloud mass flux is sampled from the

equilibrium cloud mass flux generating rate distri-

bution g(m):

g(m) = Ṅ
1

�m�e
− m

�m� (7)

with parameters �m�, which is the mean mass flux

per cloud in the full cloud ensemble, and cloud gen-

erating rate Ṅ (#/s/m
2
).

The ensemble average number of clouds in a do-

main can be derived by integrating the instanta-

neous distribution of mass fluxes:

�N� =
∞�

0

�n(m�)�dm� ≈
∞�

0

�τ(m)��g(m)�dm

(8)

The cloud life time of individual clouds τ(m) we

get empirically from LES (Fig. 8) by approximat-

ing the joint distribution of cloud mass flux and

cloud life time with a simple power law:

τ = αmβ
(9)

with parameters α = 0.163 and β = 0.79.

Figure 8: Scatter plot of the average cloud mass flux

(kg/s) and cloud life time (h) from the LES RICO GCSS

case (12-18h of simulation). The power-law fit (9) is

plotted with a dashed line.
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A main goal is to reproduce 
the PDF of mass fluxes on 
various grids:

Some results of this stochastic model

(a) cloud mass flux, 1.6 km (b) cloud mass flux, 3.2 km

(c) cloud mass flux,6.4 km (d) cloud mass flux, 12.8 km

Figure 13: Histograms of the total mass flux on 700 m height level for different model horizontal resolution:
coarse grained LES tracking results vs stochastic model with the single exponential function.

Table 8: Parameters for the model formulation with the
two component mixed exponential distribution

parameter value unit
�m1� 13 518.56 kg/s
�m2� 57 083.07 kg/s
f1 0.861 -
f2 0.139 -
Ṅ1 1.066 %/s/domain
Ṅ2 0.173 %/s/domain
α 0.16 -
β 0.79 -
w1 1.227 -
w2 0.798 -

inate in the separate treatment of the two cloud
groups. Cloud mass flux is sampled for each cloud
individually depending on the group it belongs to,
where the choice for the splitting into two groups is
given by generating a random number f = [0, 1].
The initialized cloud becomes active if the fraction
f < 0.139, otherwise it is being assigned to the
passive/forced cloud group. Cloud vertical veloc-
ity is also assigned to each cloud depending on the
group it belongs to, for which we take averaged val-
ues over all clouds that form the group. On the
other side the separate treatment of the two cloud
groups improves the variance of the cloud proper-
ties compared to the single exponential case (see
Section 7).
For the qualitative evaluation of the model skill to
adapt to the different grid box sizes we show the
histograms of the fractional cloud cover from the
stochastic model for the different model horizon-
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How does the variance scale with mean 
cloud number or grid spacing?

Variance as function of grid size
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LES of organized shallow convection

LES simulation can reproduce 
the observed features:

– different cloud sizes which 
organize in clusters and 
mesoscale arcs.

– thin ,high‘ clouds from 
convective outflow.

– cloud free areas which could 
be identified as cold pools.

– cloud tops are well below 
3000 m height.

– significant precipitation of 
about 1 mm/day or 30 W/m2 
starts after 15 hours. 

Moist RICO case of Stevens and Seifert (2008) on a 25 m isotropic grid with 50 km domain 
size (2048x2048x160 grid points).



Does the variance scale still 
hold for organized cloud fields?

Variance for organized cloud fields
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Organization due to cold pools:
 Sub-cloud layer temperature and clouds

potential temperature 
averaged over the sub-
cloud layer (colors)

liquid water path 
(isolines every 1 g/m2)



Mesoscale moisture patches:
 Sub-cloud layer moisture and clouds

water vapor mixing ratio 
vertically averaged over 
the sub-cloud layer. 
Shown is the deviation 
from the horizontal mean 
(colors)

liquid water path 
(isolines every 1 g/m2)



• Precipitating shallow convection does self-organize into mesoscale arcs.

• The main feedback causing organization is the evaporation of rain below 
cloud base and the corresponding cold pools.

• This leads to the formation of mesoscale structures in the moisture field with 
scales of O(1 km) and cloud-free areas of O(10 km).

è Targeting mesh sizes of O(1 km) we hope that the mesoscale moisture 
structures can be represented by the grid scale, i.e., we keep the 
stochastic sub-grid model spatially random with a simple Poisson process.

è But we do need a good representation of rain formation and evaporation 
in the sub-grid stochastic scheme.

This choice will, of course, depend on the application. For example, on O(10 km) 
grids the organization should be taken into account in the sub-grid (stochastic) 
scheme.

Mesoscale organization



• Most parameterization, including state-of-the-art convection schemes 
assume a simple threshold behavior as introduced by Kessler (1969). This is 
an ad-hoc parameterization which cannot be derived for the kinetic equation.

• A more physical formulation is based on time scales, i.e., a Damköhler 
number which is the ratio of cloud lifetime and a rain formation timescale.

Why do clouds rain?

In a simple kinematic framework in can 
be shown that the precipitation efficiency 
of shallow clouds is a function of the 
Damköhler number (Seifert and Stevens 
2010, J. Atmos. Sci.)



Microphysical time scale

28 IPAM Workshop ,Simulation Hierarchies for Climate Modeling‘, May 2010 

Towards a cloud-scale theory ! 
 Definition of the microphysical timescale 

Define a rain formation timescale based on a simple parcel model with constant condensation rate 
(Stevens and Seifert 2008): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time needed for rain formation as a function of condensation time scale !cond (vertical velocity and 
lapse rate) as well as droplet number conc. Nc and kernel parameter kau. 
 
But the equation is not closed, yet. We need a parameterization for "* 

! 



PE ∼

τlife

τmicro
"
2
∼ Da "

2

P ∼ Da !
4
H ∼ Da !

5

Precipitation efficiency of clouds in LES

Preliminary results suggest

i.e. the rain rate scales with

which emphasizes the need to get 
the tail of the size distribution 
correct.



A non-Markovian stochastic scheme

Due to the explicit lifecycle of each individual cloud and the delayed formation of 
rain the final scheme will not only be stochastic but also non-Markovian.

This is an example of the memory effect of sub-grid parameterizations as 
derived for general systems by Wouters and Lucarini (2012, J. Stat. Mech.).

Grid scale (Δt < 1 min)

Sub-grid

Forcing Response
(e.g. cold pools)

time

1-2 hours



Conclusions and Outlook
è Stochastic parameterizations offer a new way of looking at the cloud problem.

è With the Plant-Craig-type shallow convection scheme we hope to improve 
ensemble spread, scale adaptivity, sub-grid convective precipitation etc.

è The next step is to implement this into a 3D NWP model and combine it with 
an existing shallow convection scheme which provides the ensemble mean 
properties.

è Important related work would be to derive the corresponding stochastic 
ODEs, because this microscopic stochastic model might be too expensive for 
operational applications. 



Related publications:

Seifert, A. and Heus, T.: Large-eddy simulation of organized 
precipitating trade wind cumulus clouds, Atmos. Chem. Phys., 13, 
5631-5645, doi:10.5194/acp-13-5631-2013, 2013.

Heus, T. and Seifert, A.: Automated tracking of shallow cumulus 
clouds in large domain, long duration large eddy simulations, Geosci. 
Model Dev., 6, 1261-1273, doi:10.5194/gmd-6-1261-2013, 2013.

Seifert, A. and B. Stevens, 2010: Microphysical Scaling Relations in a 
Kinematic Model of Isolated Shallow Cumulus Clouds. J. Atmos. Sci., 
67, 1575–1590. doi: 10.1175/2009JAS3319.1

Stevens, B. and Seifert, A., 2008: Understanding macrophysical 
outcomes of microphysical choices in simluations of shallow cumulus 
convection, J. Meteorol. Soc. Japan, 86, 143162. 1858, 1870

Movies showing organized shallow convection can be downloaded from

https://dl.dropboxusercontent.com/u/25854302/xy_plots_albedo.avi
https://dl.dropboxusercontent.com/u/25854302/xy_plots_tdev_sc.avi
https://dl.dropboxusercontent.com/u/25854302/xy_plots_qdev_sc.avi

These are higher resolution versions of the movies provided as online supplement with the ACP paper.
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