

CALibration of the COSMO MOdel CALMO

Contributing Scientists

Antigoni Voudouri (HNMS), Euripides Avgoustoglou (HNMS),
Pavel Khain (IMS), Izthak Carmona (IMS),
Federico Grazzini (ARPA) and Jean-Marie Bettems (MeteoSwiss)

Motivation

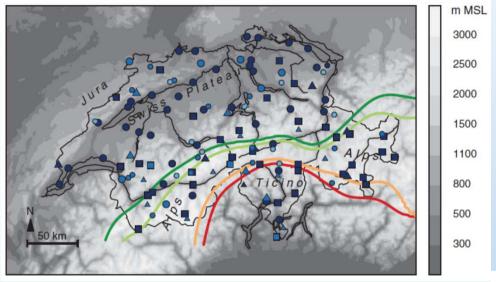
- Substitute expert tuning with objective calibration any time new unconfined parameters are induced in COSMO model
- Provide a useful tool for model re-calibration on any standard production system used by National Weather Services
- Transfer expertise gained through the implementation of the calibration methodology from Stage 1 (coarse resolution) to Stage 2 (fine resolution)

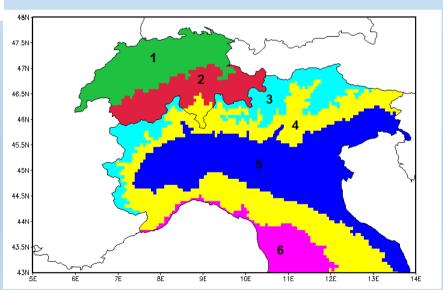
COSMO 7km (CALMO Forecast) Steps from CALMO Stage 1 to Stage 2 Increased resolution from 7km COSMO-2 topography m 49°N 49°N 48°N 47°N 46°N 45°N 44°N 43°N 4°E 8°E 10°E 12°E 14°E 16°E 500 1000 1500 2000 2500 3000 **COSMO-GM Offenbac**to 2.2km (Stage 2) 2016

Steps from CALMO Stage 1 to Stage 2 Increased simulations period

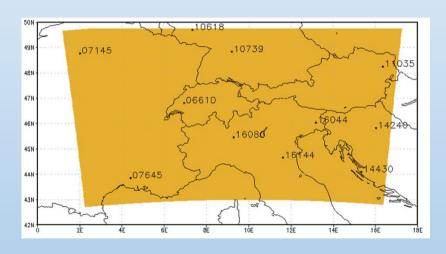
Stage-1

- Two 3-weeks periods (from 40 days of 2008)
 - winter (3-20/1/2008) and
 - summer (2-20/6/2008)


Stage-2


Entire year 2013

Steps from CALMO Stage 1 to Stage 2 Increased verification area to include also north of Italy



Steps from CALMO Stage 1 to Stage 2 Added soundings profiles to include more fields

Stage-1

- Daily maximum 2m temperature
- Daily minimum 2m temperature
- 24h accumulated precipitation

Stage-2 (Stage-1 & New)

- Total column water vapor
- Relative humidity, temperatures, East-West wind component and South-North wind component at 500mb,700mb and 850mb
- Vector wind shear between the levels of 1000mb-850mb, 850mb -700mb and 700mb- 500mb
- Convective available potential energy
- Convective inhibition

Steps from CALMO Stage 1 to Stage 2 Increased number of free parameters tested for calibration

Surface layer					
Name	range	comment			
rlam_heat (and rat_sea)	[0.1,1*,2] ([1,20*,100]	changes in rlam_heat must be compensated by an inverse change of rat_sea in order to maintain (at least approximately) rlam_heat*rat_sea. [0,20*, 200) This in principle also applies to COSMO model unless we intend to change the evaporation over water.			

	turbulence	
Name	range	comment
tur_len	[100,150*, 1000]	L_scal=MIN(0.5*l_hori, tur_len
tkhmin (and tkmmin)	[0.1, 0.4*, 1]	Should be equal! Increasing values does not keep low clouds, decreasing values better scores

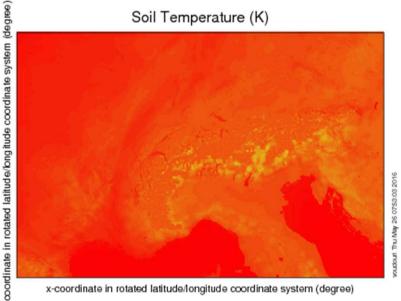
Steps from CALMO Stage 1 to Stage 2 Increased number of free parameters tested for calibration

Surface layer					
Name	range	comment			
c_soil	[0,1*, 0.5 , c_Ind]	c_lnd=2			
rlam_heat (and rat_sea)	[0.1, 0.2 ,1*,2] ([1,20*,100]	changes in rlam_heat must be compensated by an inverse change of rat_sea in order to maintain (at least approximately) rlam_heat*rat_sea. [0,20*, 200) This in principle also applies to COSMO model unless we intend to change the evaporation over water.			

Shallow convection					
Name	range	comment			
entr_sc	[0.5,3*, 7.95 , 20]E-04				

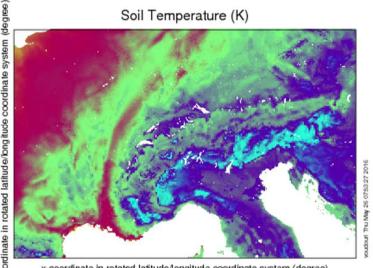
	turbulence	
Name	range	comment
tur_len	[100,150*, 316 , 1000]	L_scal=MIN(0.5*l_hori, tur_len
tkhmin (and tkmmin)	[0.1, 0.4*, 0.7 , 1]	Should be equal! Increasing values does not keep low clouds, decreasing values better scores

Vegetation and soil					
Name	range	comment			
crsmin	[50,150*,200]				


Grid scale precipitation						
Name	Name range comment					
v0snow	[10, 15 , 20*,30]	25 in COSMO-EU In (data_gscp.f90)				

Steps from CALMO Stage 1 to Stage 2

Initial data for soil temperature and soil water content extracted from the updated version of TERRA standalone (TSA).


x-coordinate in rotated latitude/longitude coordinate system (degree)

Range of Soil Temperature: 0 to 290.039 K

Range of x-coordinate in rotated latitude/longitude coordinate system: -6.8 to 4.77 degree Range of y-coordinate in rotated latitude/longitude coordinate system: -4.4 to 3.33 degree

Current time: 0 seconds since 2013-01-01 00:00:00

Current Depth below land surface: 0 cm Frame 1 in File laf2013010100 noTSA.nc

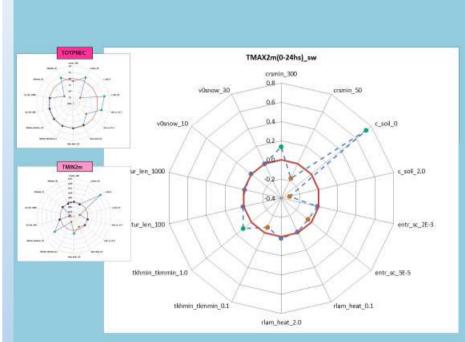
x-coordinate in rotated latitude/longitude coordinate system (degree)

Range of Soil Temperature: 258.867 to 289.714 K

Range of x-coordinate in rotated latitude/longitude coordinate system: -6.8 to 4.77 degree Range of y-coordinate in rotated latitude/longitude coordinate system: -4.4 to 3.33 degre

Current time: 0 seconds since 2013-01-01 00:00:00

Current Depth below land surface: 0 cm


Frame 1 in File laf2013010100.nc

Steps from CALMO Stage 1 to Stage 2

Proposed a new methodology for the selection of additional interaction simulations other than min-max-default

													TMM2m c	lass 2
													TMAX2m c	lass 3
	c_soil min	c_soil max	v0_sn min	v0_sn max	crsmin min	crsmin max	entr min	entr mex	tkhm min	tkhm max	tur_l min	tur_l max	rlam_h min	riam_ max
c_soil min			14	2	1	16	13	3	26	35		25	27	34
c_soil max			5	19	21	10	4	20	41	29		39	40	32
vD_sn min					6	18	15	7						
v0_sn max					22	11	8	23						
crsmin min							9	24	45	44				47
crsmin max							17	12	43	46				48
entr min														
entr max														
tkhm min												38	42	33
tkhm max												28	30	36
tur_l min														1-22
tur_l max													37	31
rlam_h min														
rlam_h max														

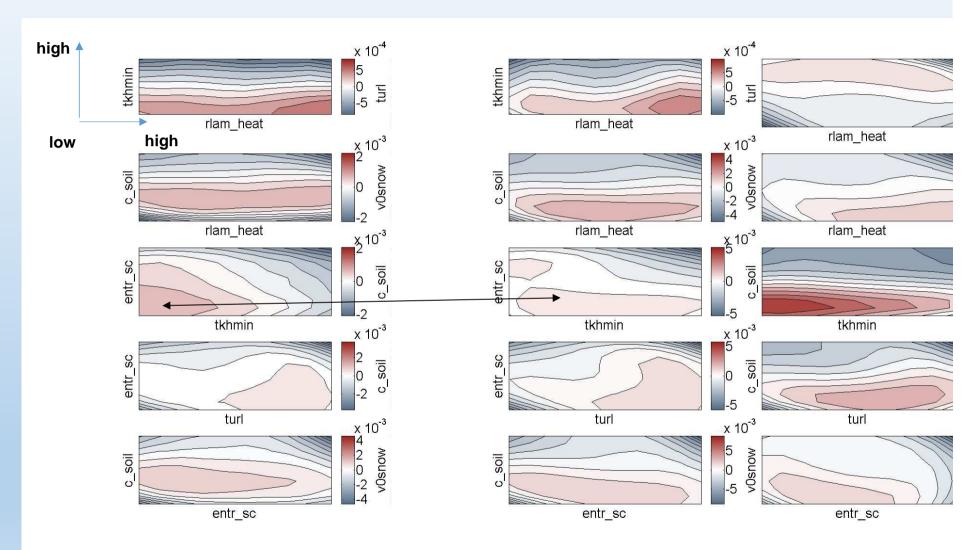
Steps from CALMO Stage 1 to Stage 2 Induced several modification to MM

- Tmax/Tmin are now optionally averaged over regions
- MM gives vertical profiles characteristics
- New regions for averaging the 24h accumulated precipitation (optional also for Tmax, Tmin) are defined
- Induced new performance scores (from RMSE to COSI)
- Logarithmic transformation for some of the parameters
- Convergence to the optimal parameters combination

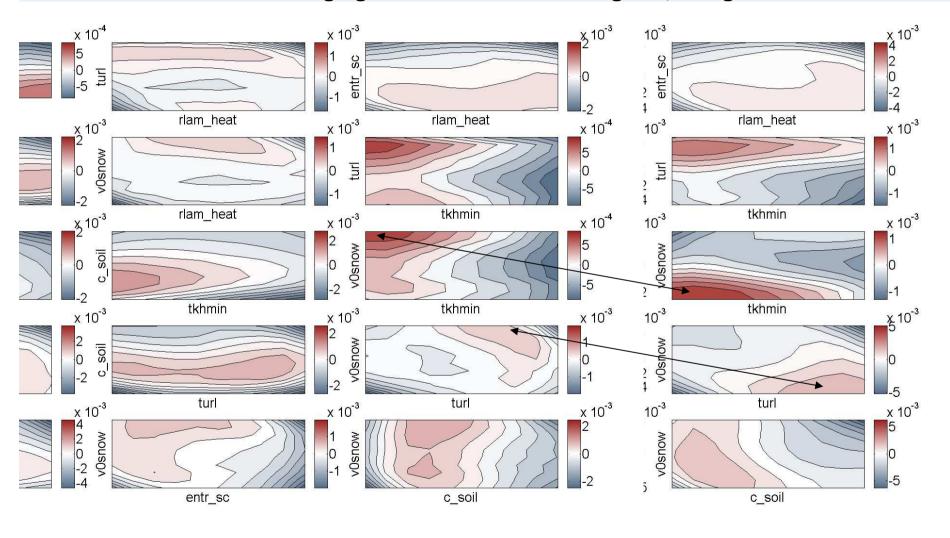
Steps from CALMO Stage 1 to Stage 2 Modification to MM induced Cosi type score

$$S_{p} = \frac{1}{12\sum_{\Psi=1}^{18} \omega_{\Psi}} \left\{ \sum_{\Psi \neq 3}^{12} \omega_{\Psi} \sum_{mon=1}^{12} \left[1 - \frac{\sum_{\Psi regs} \sum_{\Psi days} (F_{\Psi,p,d,r,mon} - O_{\Psi,d,r,mon})^{2}}{\sum_{\Psi regs} \sum_{\Psi days} (O_{\Psi,d-1,r,mon} - O_{\Psi,d,r,mon})^{2}} \right] + \omega_{3} \frac{\sum_{mon=1}^{12} \sum_{\Psi regs} \sum_{\Psi thr} ETS_{p,r,mon,thr}}{N_{\Psi days,mon} N_{\Psi regs,mon}} \right\}$$

$$ETS_{p,r,mon,thresh} = \frac{H - \frac{(H+F)(H+M)}{N_{\Psi regs,mon}}}{H+M+F - \frac{(H+F)(H+M)}{N_{\Psi regs,mon}}}$$


Calibration results

- Calibration was performed using 4 different methods:
 - Averaging Tmax and Tmin over regions, using RMSE-type score;
 - Not averaging Tmax and Tmin over regions, using RMSE-type score;
 - Averaging Tmax and Tmin over regions, using or the COSI score;
 - Not averaging Tmax and Tmin over regions, using the COSI score.


Method 3: Averaging Tmax and Tmin over regions, using or the COSI score

Method 4: Not Averaging Tmax and Tmin over regions, using the COSI score

Optimal parameters combinations according 4 different methods

	METHOD I	METHOD II	METHOD III	METHOD IV
	rlam_heat=0.763	rlam_heat=1.105	rlam_heat=0.740	rlam_heat=1.240
	tkhmin=0.209	tkhmin=0.390	tkhmin=0.176	tkhmin=0.233
	tur_len=312.7	tur_len=475.6	tur_len=368.8	tur_len=363.9
	entr_sc=0.000101	entr_sc=0.000077	entr_sc=0.000114	entr_sc=0.000267
	csoil=0.626	csoil=0.761	csoil=0.663	csoil=0.492
	v0snow=17.9	v0snow=18.2	v0snow=17.8	v0snow=12.1
METHOD I	1.828 %	1.557 %	1.801 %	1.329 %
METHOD II	1.647 %	1.880 %	1.685 %	1.556 %
METHOD III	1.481 %	1.217 %	1.587 %	0.980 %
METHOD IV	2.980 %	2.966 %	2.916 %	3.951 %
Average score:	1.984 %	1.905 %	1.997 %	1.954 %

Optimum parameters set using method 3

Surface layer						
Name	range	comment				
c_soil	[0, 0.663 ,1*, c_lnd]	c_Ind=2				
rlam_heat (and rat_sea)	[0.1, 0.74 ,1*,2] ([1,20*,100]	changes in rlam_heat must be compensated by an inverse change of rat_sea in order to maintain (at least approximately) rlam_heat*rat_sea. [0,20*, 200) This in principle also applies to COSMO model unless we intend to change the evaporation over water.				

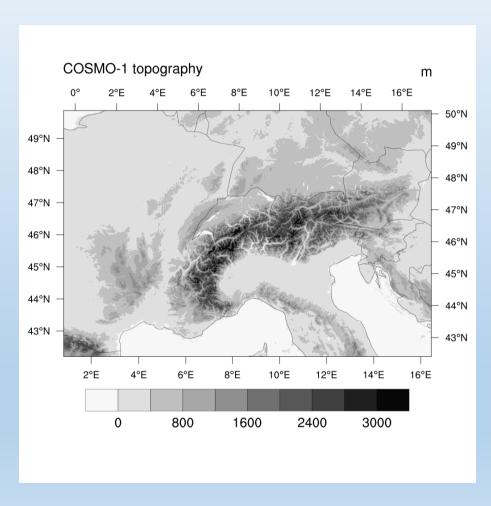
Shallow convection					
Name	range	comment			
entr_sc	[0.5 , 1.14, 3*, 20]E-04				

	turbulence	
Name	range	comment
tur_len	[100,150*, 368.8 , 1000]	L_scal=MIN(0.5*l_hori, tur_len
tkhmin (and tkmmin)	[0.1, 0.176 , 0.4*, 1]	Should be equal! Increasing values does not keep low clouds, decreasing values better scores

Grid scale precipitation				
Name	range	comment		
v0snow	[10, 17.8 , 20*,30]	25 in COSMO-EU In (data_gscp.f90)		

Summary of Stage 2

- Further optimization of a well tuned NWP model is feasible
- A maximum of about 4% improvement is achieved for COSMO-2 using CALMO methodology
- Optimum values of the 5 out of 6 parameters used are less than the default ones
- Differences on the optimum set of parameter are evident when averaging (NOT suggested for NWP model) variables such as temperatures over simulation domain
- As the performance score used for calibration changes the values of optimum set, it could be selected according the end user's needs
- Thus CALMO methodology could be a useful tool for running a calibrated COSMO model over different simulation areas
- Minimize computational cost of methodology is still missing.......


References

- <u>Avgoustoglou Euripides</u>, Antigoni Voudouri, Pavel Khain, Federico Grazzini and Jean-Marie Bettems, 2016. Design and Evaluation of Sensitivity Tests of COSMO Model over the Mediterranean:13th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP 2016),Thessaloniki, 19-21 September 2016. Springer International Publisher AG: "Perspectives on Atmospheric Sciences"
- Khain P., I. Carmona, A. Voudouri, E. Avgoustoglou, J.-M. Bettems, F. Grazzini (2016). Progress report on CALMO stage 2
- Voudouri A., Khain P., Carmona I. Bellprar O., Grazzini F., Avgoustoglou E., Bettems J. M. and Kaufmann P. 2016: Objective calibration of numerical weather prediction models, Atm. Res. Under revision
- <u>Voudouri Antigoni</u>, Euripides Avgoustoglou and Pirmin Kaufmann, 2016. Impacts of observational data assimilation on operational forecasts. 13th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP 2016), Thessaloniki, 19-21 September 2016. Springer International Publisher AG: "Perspectives on Atmospheric Sciences"
- Under preparation:
 - A second manuscript summarizing the work using COSMO 2km
 - Final project report
 - A cookbook and the latest version of the MM

Steps from CALMO Stage 2 to Stage 3 Started COSMO-1 calibration using GPU COSMO (STELLA 1.04.12)

Steps from CALMO Stage 2 to Stage 3 5 free parameters used for calibration

Surface layer				
Name	range	comment		
c_soil	[0,1*, c_lnd]	c_Ind=2		
rlam_heat (and rat_sea)	[0.1, 1*,2] ([1,20*,100]	changes in rlam_heat must be compensated by an inverse change of rat_sea in order to maintain (at least approximately) rlam_heat*rat_sea. [0,20*, 200) This in principle also applies to COSMO model unless we intend to change the evaporation over water.		

Shallow convection		
Name	range	comment
entr_sc	[0.5 ,3, 20]E-04	

turbulence				
Name	range	comment		
tur_len	[100,150*, 1000]	L_scal=MIN(0.5*l_hori, tur_len		
tkhmin (and tkmmin)	[0.1, 0.4*, 1]	Should be equal! Increasing values does not keep low clouds, decreasing values better scores		

Vegetation and soil				
Name	range	comment		
crsmin	[50,150*,200]			

CALMO Methodology Applied on eXtremes (C-MAX), associated with calibration during extreme events, use of 'extremely' low resources as well 'extremely' new model parameterization C-MAX is coming......

Thank you for the attention