

Annika Schomburg, Christoph Schraff

This work was funded by the EUMETSAT fellowship programme.

COSMO User Seminar, Offenbach, 17 – 19 March 2014

Observations

 Geostationary satellite data: Meteosat-SEVIRI (Δx ~ 5 km over central Europe, Δt = 15 min)

Source: EUMETSAT

Use of cloud top height (CTH) 'obs' in LETKF: Method for cloud-covered pixels

Use of cloud top height (CTH) 'obs' in LETKF: Method for cloud-covered pixels

Use of CTH 'obs' for **cloud-covered** pixels : Example for obs / model equivalents

Deutscher Wetterdienst Wetter und Klima aus einer Hand

"Cloud top height"

17 Nov 2011, 6 UTC

Use of cloud top height (CTH) 'obs' in LETKF: Method for cloud-free pixels

type of obs increment , for pixels observed to be **cloud-free** ?

- assimilate cloud fraction CLC_{obs} = 0 separately for high, medium, low clouds
- model equivalent: maximum *CLC* within vertical range

annika.schomburg@dwd.de

→ COSMO cloud fraction where observations "cloudfree"

DWD **Cycling LETKF data assimilation experiment : Deutscher Wetterdienst** 6 comparison Wetter und Klima aus einer Hand **only conventional obs** (radiosonde, aircraft, wind profiler, surface) VS conventional + cloud data LETKF: 40 ensemble members, obs thinning 14 km • 1-hourly cycling over 21 hours, 13 Nov., 21 UTC – 14 Nov. 2011, 18 UTC (wintertime low stratus) observed cloud top height (CTH) 55N 50N 45N 15E 5E 10E 10E 15E 5E 10E 15E 5E 10E 15E 5E 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 height [km] height [km] height [km] height [km] 0:00 UTC 17:00 UTC 6:00 UTC 12:00 UTC 8 EUMETSAT

annika.schomburg@dwd.de

Sensitivity experiment : data density

 cloudy pixels: best results for a 14 km thinning cloud-free pixels: no clear conclusion

- → lower spread for 8km thinning experiment (small difference in spread betw. 14 / 20km thinning
- → ensemble is underdispersive, but no sign of a further reduction of spread during the cycling

Cycling LETKF: comparison 'only convectional' versus 'conventional + cloud obs'

Time series of first guess errors, averaged over cloudy obs locations

annika.schomburg@dwd.de

EUMETSAT

Cycling LETKF: comparison 'only convectional' **Deutscher Wetterdienst** versus 'conventional + cloud obs' Wetter und Klima aus einer Hand

Total cloud cover of first guess fields after 20 hours of cycling

annika.schomburg@dwd.de

DWD

time series of first guess errors, averaged over **cloud-free** obs locations (errors are due to false alarm cloud)

annika.schomburg@dwd.de

Cycling LETKF: comparison 'only convectional' versus 'conventional + cloud obs'

Comparison of free deterministic forecast (after 12 hrs DA): time series of errors

(forecast starts 14 Nov., 9 UTC)

The forecast of cloud characteristics can be improved through the assimilation of the cloud information

Verification of free deterministic forecast against independent observations

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Errors for SEVIRI infrared brightness temperatures Conventional + cloud data (model values computed with RTTOV) **Only conventional data** IR108 WV073 12 6.0 Bias conv+clouds Bias conv+clouds --Bias conv 10 Bias conv RMSE conv+clouds RMSE conv+clouds RMSE conv RMSE conv 4.0 RMSE 8 Error [K] 6 2.0 4 2 0.0 0 Bias (Obs-Model) -2.0 -2 20 8 12 16 24 0 8 12 20 24 4 0 Δ 16 Hours Hours

→ RMSE is smaller for first 16 hours of forecast for cloud experiment, bias varies

Verification of 9-h forecast against indep. obs: SEVIRI brightness temperature

Deutscher Wetterdienst Wetter und Klima aus einer Hand

→

TSAT

DWD 6

Use of (SEVIRI-based) cloud observations in LETKF:

- Tends to introduce humidity / cloud where it should ullet
- Tends to reduce 'false-alarm' clouds •
- Improvement on cloud characteristics in free forecast for a stable • wintertime high-pressure systems
- May also be useful for convective situations lacksquare
 - If convective clouds are captured better while developing, convective ulletprecipitation may be improved \rightarrow needs to be tested

- Evaluate other variables and other cases, longer time series
- Application in project EWeLiNE: Improving the forecast for renewable energy sector (clouds particularly important for photovoltaic power production) EWeLiNE
- Also work on direct SEVIRI radiance assimilation • (together with Africa Perianez, Robin Faulwetter)

Thank you for your attention!

Local Ensemble Transform Kalman Filter

