UNIVERSITÄT FRANKFURT AM MAIN

GOETHE

New Initializations of TERRA

for Climate Simulations

J. Tödter (toedter@iau.uni-frankfurt.de)¹ and B. Ahrens¹

Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt/Main, Germany

Motivation

Medium-range climate prediction: partly an initial value problem...

•Deep soil has long-term memory \rightarrow potential climate predictability Realistic land surface initialization (in COSMO's TERRA) beneficial Prognostic target variables: soil moisture & soil temperature

Approaches using TERRA-ML offline

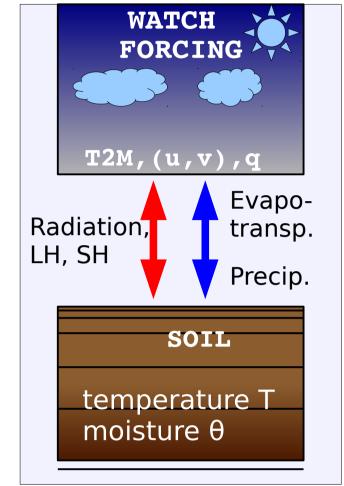
Assimilation runs in advance of the climate simulations, with... (1) Assimilation of land surface forcing products (2) Assimilation of soil-related observations \rightarrow Both systems under development / partly ready feeds Assimilation Initialization Coupled

Principle

Long-term run of offline model with optimized forcing data: WATCH surface forcing data set^[1]

 \rightarrow Adjustment of (deep) soil over long time range (years)

Advantages


✓Comparably simple application

 \checkmark Can be used for *any* region and *any* time period in between 1979-2012

✓ Ensures CCLM-balanced initial surface conditions

Challenges

Spin-up period has to be sufficiently long

Ensemble Data Assimilation

CCLM run

Priniciple

run (TERRA)

Assimilation of soil-related observations (satellites) into TERRA with sequential ensemble filters ▶ETKF^[2] or new development, ETPF^[3]

Advantages

✓ Fast convergence, within months ✓ Deals with uncertainties ✓Allows joint state & parameter estimation

Challenges

♦ Observation quality & availability? Information transfer to deep soil? ♦Technically extensive, tuning required...

Time

 \sim

2. Analysis

Parallel

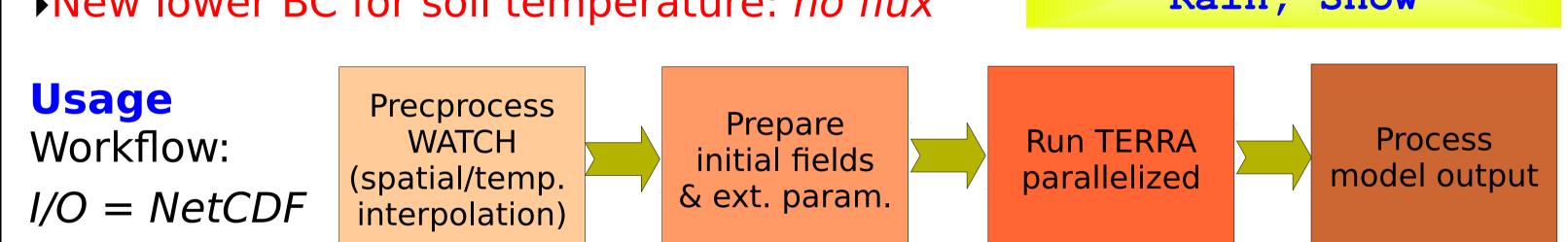
Assimilation

R

Data

Technical Issues & State of Work

System ready


▶ TERRA can be run with WATCH forcing data Transfer scheme for offline version revised New lower BC for soil temperature: *no flux*

Forcing variables:

 T_{2m} , $|v|_{10m}$, q_{2m} , P_{10m} , SwDown, LwDown, Rain, Snow

EnDA system partly ready

Framework ▶TERRA was implemented into PDAF^[4] •Efficient analysis steps & iteration with ensemble forecasts

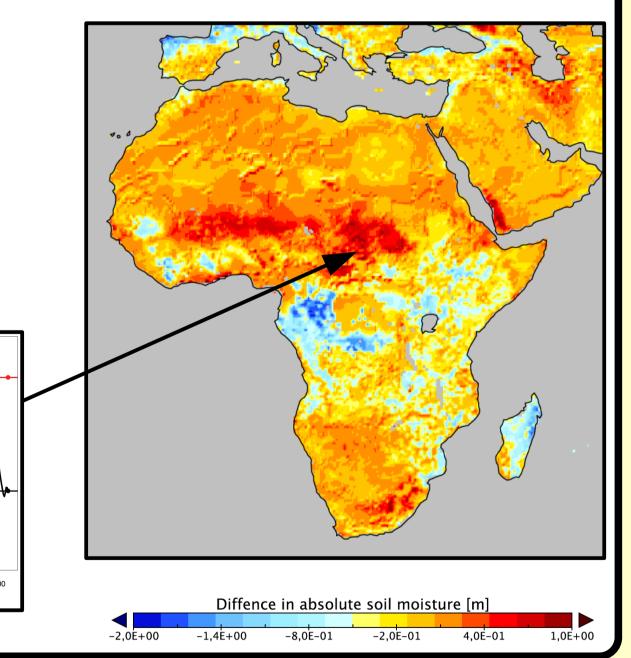
Usage

Single column version ready & working Spatial version with localization: final development \rightarrow parallelization to be done

First Application Results

Regional applications

↔ Performed runs for Europe & Africa ↔WATCH+TERRA exhibits no model drift \hookrightarrow Reasonable soil dynamics over long range \hookrightarrow To be used in MiKliP regional simulations


Example: Africa

 \hookrightarrow Significant differences to usual ERA-based CCLM initial land surface fields \hookrightarrow E.g. Sahel too wet

- precipitation bias?

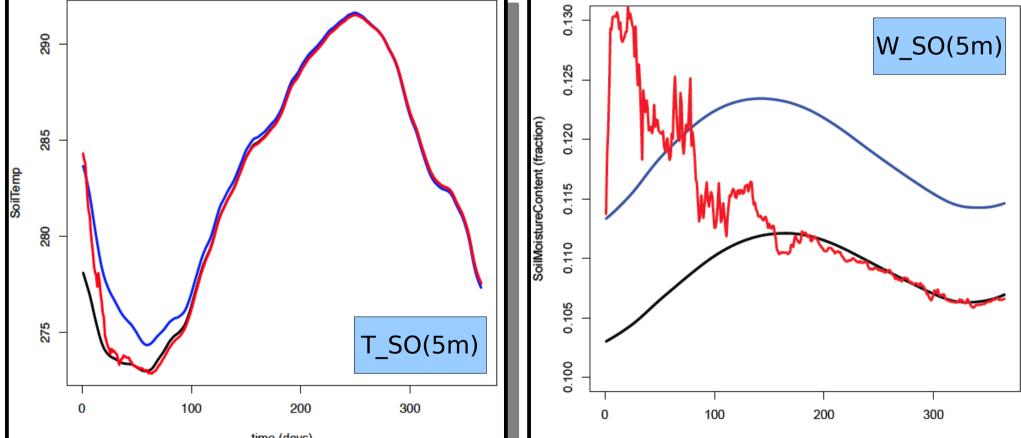

Fig.2:Temporal evolution of deep soil moisture in WATCH+TERRA 1979-2001 Red dot = standard initial cond. at 2001-01-01

Fig.1: STANDARD - NEW of soil moisture initial fields at 2001-01-01 in last soil layer

Twin experiments

 \hookrightarrow Reconstruction of truth with synthetic observations \hookrightarrow Information transfer possible to intermediate depths \hookrightarrow Analysis potentially faster than spin-up \hookrightarrow Requires observations of sufficient quality

& moisture

Fig.3,4: Analysis (red)

and spinup (blue) versus truth (**black**)

with observations

of 1^{st} layer only,

for soil temp.

Summary & Next Steps

 \rightarrow A framework to spin up TERRA-ML by applying WATCH forcing data to generate initial conditions for CCLM runs has been finalized.

Tool availability

Easy usage \rightarrow Potential benefit for other future CCLM simulations **Assessment: Impact of new initial conditions?** Decadal predictions for Europe & Africa currently running

 \rightarrow TERRA-ML has been successfully put into ensemble data assimilation mode.

Finalization of EnDA environment Towards a coherent Ensemble-TERRA-PDAF framework **Application on regional scale** Usage of real satellite observations

References

[1] EU project "Water and Global Change" (WATCH, 2007-2011), http://www.eu-watch.org/data_availability [2] Hunt, B. R et.al., 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126. [3] Tödter, J, B.Ahrens (2014): A Second-Order Exact Ensemble Square Root Filter, tbs [4] Nerger, L., W.Hiller (2013): Software for Ens.-based Data Assimilation Systems - Implementation Strategies & Scalability. Comp. & Geosc. 55,110-118. Presented at the COSMO/CLM User Seminar (DWD, Offenbach, March 2014)

Support by the MiKliP project (BMBF) is acknowledged.

