Investigations of tropopause dynamics using PV tracers in the COSMO model

Werner Schneider, Andreas Bott

Meteorological Institute, University of Bonn

COSMO User Seminar, March 17-19, 2014

Motivation

Concepts for tropopause dynamics:

- tropopause break at jet streams
 - \rightarrow tropopause folds
 - ightarrow stratospheric dry intrusions
 - \rightarrow PV streamer
- PV anomalies

Idealized concepts of jet dynamics:

- effects of curvature, latitude, confluence and diffluence
- ageostrophic circulations at fronts

adapted from Browning, 1997

\rightarrow Visualization of realistic tropopause dynamics using tracer studies

Dynamic Tropopause

Definition with Potential Vorticity (PV = 2 PVU)

Identification of stratospheric air in the troposphere

- redistribution and diffusion of PV
- initial PV maxima and minima
 - \rightarrow no clear identification of stratospheric air masses

Passive PV tracer:

- $\bullet\,$ initialized with 2 TU/kg where PV > 2 PVU
 - \rightarrow uniform distribution
 - \rightarrow filtering of initial tropospheric PV structures
- background concentration of 1 TU/kg
 - \rightarrow direct derivation of mixing ratios for stratospheric air

Dynamic tropopause

Filtering

Dynamic tropopause

Filtering

Case study: March 8-10, 2008

Case study: March 8-10, 2008

Tracking of source region

Stratospheric air streamers in the planetary boundary layer

Tracer mixing ratio, lowermost model layer; 10.03.2008 12:00 Tr [TU/kg]

Source region

Concept of dry intrusion:

- dry intrusion can be visualized with PV tracers
- structure similar to idealized concepts
- PV streamer in boundary layer

Additional observations:

- sinking starting from existing PV anomaly in about 5 km height
- only air from lowermost stratospheric layers reaches planetary boundary layer

 \rightarrow Pre-conditioning of tropopause structure before cyclogenesis

Tracer analyses allow deep insight into mesoscale dynamics in NWP-models.

First results:

- dry intrusions need to be analyzed over longer time scales
- pre-conditioning and large scale PV-anomalies play distinct role
- formation not only during single cyclogenesis

Thank you for your attention!