

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

COSMO-E experiments with SPPT on the convection-permitting scale

Daliah Maurer, André Walser, Marco Arpagaus MeteoSwiss

> COSMO User Seminar 19 March 2014

COSMO-E (experimental) setup

- Ensemble forecasts with **convection-permitting resolution** (2.2 km mesh-size, 60 vertical levels)
- 21 members, forecasts up to +120h, Alpine area
- ICs: perturbations: KENDA/LETKF analysis no perturbations: operational COSMO-2 analysis
- LBCs:

perturbations: IFS-ENS members 0-20 no perturbations: IFS-ENS member 0

• COSMO version 5.0 with single precision: reduction of elapsed time to 60% with same forecast quality!

SPPT: Stochastic Perturbation of Physical Tendencies

Xprognostic variable (u, v, T, q_v , q_c , q_i , q_r , q_s , q_g) P_i^X physical parameterisation scheme i(turbulence, radiation, microphysics, shallow convection, ...)

copied and adapted from Shutts

SPPT: Generation of random pattern

will (probably) be available with COSMO 5.1

copied and adapted from Torrisi

Outline: COSMO-E with SPPT

• Sensitivity

check sensitivity of ensemble spread to different SPPT parameter settings

• Validation

make sure chosen SPPT parameter settings do not degrade deterministic model runs (model climatology)

• Verification

run system for extended period and assess quality

• Conclusions and outlook

Sensitivity: SPPT perturbations only

name	Δt	Δi=Δj	σ	range
12	1h	0.5 °	0.5	1.0
14	6h	5.0°	0.5	1.0
19	6h	5.0°	1.0	0.9
20	6h	2.5°	1.0	0.9

• no tapering in lower troposphere

- main motivation to taper SPPT in PBL are stability issues;
 COSMO-E runs did not show any stability problems
- turning tapering off has significant (positive) impact on spread in PBL
- no humidity limiter
- no IC and LBC perturbations
 - ICs: COSMO-2 analysis, LBCs: IFS-ENS control

Sensitivity: 19.08.2012

lead-time [h]

Sensitivity: results

- spread decreases with increasing height above surface
 - tapering in lower troposphere reduces spread substantially
- larger random numbers produce larger spread and faster spread growth
- smaller correlation-lengths in space and time lead to (substantially!) smaller spread
- spread growth saturates at about the same lead-time for all height levels

Validation: deterministic runs

- SPPT **must not** degrade (deterministic) quality of ensemble members
- deterministic runs (1 month each in summer and winter 2012) for different SPPT parameter settings
- → deterministic verification, upper-air and surface; the following slides show the largest differences between the different SPPT parameter settings

Upper-air: wind direction +72h, all stations, 26.07-25.08.2012

U

X-----X ex20 E ex10. 🛧 e×11 ← = = = ○ ex13 ***----** ex14 +----+ ex19

Surface: wind speed all stations, 26.07-25.08.2012

0

Validation: results

- generally (very) small differences between different tested SPPT parameter settings
- larger differences found for summer
- no differences seen for humidity; no drying observed!
- no significant quality degradation observed with SPPT, even for very strong stochastic perturbations of physical tendencies
- choose (aggressive) SPPT parameter settings "19" for subsequent tests

Verification: COSMO-E test suite

- 1 month period (26.07.-25.08.2012), one run at 00 UTC every second day (results in 16 runs per setup)
- experiments:

name	ICs	LBCs	Δt	Δi=Δj	σ	range		
19e111	LETKF	ENS	6h	5.0 °	1.0	0.9		
19e110	LETKF	ENS						
19e011	COSMO-2	ENS	6h	5.0°	1.0	0.9		
	COSMO-LEPS (ICs & LBCs: IFS-ENS)							

for SPPT: no tapering near the surface, no humidity limiter

- → spread / error relation against COSMO-2 analysis
- \rightarrow BS and BSS against surface observations

spread / error: wind speed

spread / error: temperature

spread / error: humidity

spread / error: wind speed, 19e110

lead-time [h]

k-level

spread / error: wind speed, 19e111

lead-time [h]

k-level

spread / error: FF, 19e111-19e110

lead-time [h]

k-level

spread / error: T, 19e111-19e110

k-level

spread / error: QV, 19e111-19e110

lead-time [h]

k-level

Verification against COSMO-2 analysis: conclusions

- generally satisfactory spread-error relation in middle and upper troposphere
 - too little spread for first 36hrs and due to IC perturbations
 - beyond day 2 spread only determined by LBC perturbations
 - almost too much spread for day 5
- significant improvement of RMEV, STDE, and BIAS due to SPPT in lower troposphere
 - still lacking spread in first 3 days and due to IC perturbations
 - positive effect of SPPT for entire forecast range
- poorest effect / results for humidity (still too little spread)

Brier Score: precip, > 5mm/12h

Brier Score

Brier Skill Score: precip, > 5mm/12h

precip > 5mm/12h (20120726 - 20120825)

Brier Score: T2m, 12 UTC, > 300K

T_2M 12 UTC > 300K (20120726 - 20120825)

Brier Score

Brier Score: T2m, 12 UTC, +60h

T_2M 12 UTC > threshold for +060h (20120726 - 20120825

Brier Score

Verification against observations: conclusions

- 12h precipitation
 - surprisingly good reliability for all lead-times; slightly decreasing resolution with increasing lead-time
 - small (!) improvement due to SPPT
 - skillful (wrt climatology); outperforms COSMO-LEPS
- 2m temperature
 - fair reliability for all lead-times; slightly decreasing resolution with increasing lead-time
 - moderate improvement due to SPPT
 - poorer than COSMO-LEPS for T2m > 300/305K (reliability!)

General conclusions

- significant and positive impact of SPPT on ensemble spread (and STDE, BIAS) in troposphere; impact of SPPT much larger than of parameter perturbations (not shown)
- moderate impact of SPPT on Brier Score for surface parameters
- still lack some spread in first 2-3 days
- skilful perturbation of humidity most difficult

Outlook

- increase statistics (e.g., winter); start regular runs
- improve ICs and IC perturbations (KENDA/LETKF)
- add "additional" perturbations at/in the surface (e.g., soil moisture; LETKF already allows for a free evolving soil, but time-scales involved are large ...)?
- look into Stochastic Kinetic Energy Backscattering Scheme (SKEBS) and/or Stochastic Pattern Generator (→ poster)?
- last but not least: get a versatile and powerful verification tool