

Towards standard urban parametrization for COSMO(-CLM)

Hendrik Wouters, Ulrich Blahak, Jürgen Helmert, Matthias Raschendorfer, Matthias Demuzere, Barbara Fay, Kristina Trusilova, Dmitrii Mironov, Daniel Reinert, Daniel Lüthi, Ekaterina Machulskaya, Jan-Peter Schulz

COSMO / CLM / ART - User Seminar 2015

Offenbach, March 2 – 6, 2015

Changes in global society

- Growing population
- 1800 -> 2014
 - 1 billion -> 7 billion
- Growing wellfare, changes in socioeconomical stuctures

Result: urban expansion

The consequence...

 Drastic local climate changes at the scale of cities → Urban heat island (UHI)

The consequence...

 Drastic local climate changes at the scale of cities → Urban heat island (UHI)

• Mainly, two processes are involved:

2 Dry surface: no evaporation Trapped solar radiation atmosphere efficiënt conversion atmosphere evapotranspiration = transpiration + evaporation sensible heat transpiration stored grass efficiently sensible heat evaporation by building materials ۲ŀ Stored in ground runoff

> groundwater recharge

Very hot surface!!

2. Human activity

Human activity

importance of urban parametrization

- When increasing resolution, both NWP as RCM applications need to account for urban climate features!
- NWP: better forecasts for temperature and precipitation in urban environments where many people live
- RCM: urban heat-stress and precipitation assessment for present-day climate and future scenarios

What about COSMO(CLM)?

- A demand for a **standard** urban parametrization
- It should be:
 - Reliable
 - The physical processes need to be resolved
 - Efficient:

• Both in terms of input parameters and computational cost

 \rightarrow Three urban parametrizations

(DCEP+BEP vs. TEB vs. TERRA-URB) coupled to COSMO-CLM are compared

- results for Berlin (Trusilova et al., accepted for SI MetZeit): In terms of urban/rural contrast in T_2M, performance of TERRA-URB is comparable to TEB and BEP/DCEP, despite the reduced computational cost and number of input parameters
- The approach in TERRA-URB has been chosen for standard urban parametrization in COSMO(-CLM)
- TEB and BEP/DCEP are provided as extensions for more detailed RCM applications (eg., street canyon temperatures)

TERRA_URB coupled to COSMO-CLM4.8_clm19 (development version)

The urban fabric...

- A simple bulk approach: buildings and streets are represented as a rough water-impermeable slab with distinct surface(-layer) characteristics compared to the natural surface
- by means of a new impervious surface type in TERRA-ML:
 - High surface roughness depending on averaged building height Sarkar and De Ridder, 2010) → drag on wind, enhanced turbulent transport
 - **low albedo** (Sarkar and De Ridder, 2010) \rightarrow Solar radiation trapping
 - high value for thermal inertia (De Ridder et al., 2013; Demuzere et al. 2008) → Infra-red radiation trapping + enhanced surface heat transfer and storage in the surface
 - thermal roughness length parametriation for 'bluff-bodies' (De Ridder et al., 2013; Demuzere et al., 2008; Kanda et al., 2008) → decreased surface-layer turbulent heat exchange with the atmosphere, hence an additional increase in surface heat uptake
 - PDF-based impervious water-storage parametrization (Wouters et al., 2015), including reservoir parameter estimates → no evaporation during dry periods
 - **No vegetation** \rightarrow no transpiration
 - New Surface-layer transfer coefficients (Wouters et al., 2012) → consistent treatment of vertical turbulent transport in the urban environment
- Tile approach: Urban pixels are represented by 2 tiles: impervious surfaces, and natural surfaces (gardens, parks...)
- Combined effect leads to Heat buffering: excess daytime surface heat storage for clear calm days is released during the night

Anthropogenic heat emission

- Additional surface sensible heat release to the atmosphere.
- This acts as a heat source to the first model layer above the ground
- Global distribution of annual mean (Flanner, 2009)
- latitudinally-dependent annual and diurnal cycles

TERRA_URB coupled to COSMO-CLM4.8_clm18 (development version)

Low level of complexity, yet the main features of urban heat islands are captured

TERRA_URB coupled to COSMO-CLM4.8_clm18 (development version)

Applications....

Urban climatic drivers of heat islands in Belgiu

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES

K.U.LEUVEN - BELGIUM

Wouters, H., Demuzere, M., Blahak., U., De Ridder, K., van Lipzig N. 20XX, The seasonal dependency of urban heat islands and their climatic drivers at the mid-latitudes: A model-based case study for Belgium (submission pending)

Climatic drivers

Midnight Average mid-summer

Brussels

Wouters, H., Demuzere, M., Blahak., U., De Ridder, K., van Lipzig N. 20XX, The seasonal dependency of urban heat islands and their climatic drivers at the mid-latitudes: A model-based case study for Belgium (submission pending)

Seasonal dependency Midnight Average mid-winter

Wouters, H., Demuzere, M., Blahak., U., De Ridder, K., van Lipzig N. 20XX, The seasonal dependency of urban heat islands and their climatic drivers at the mid-latitudes: A model-based case study for Belgium (submission pending)

Heat waves for cities in Belgium

<u>D</u>

COSMO-CLM + TERRA-URB coupled to an **air-quality model**

Test version COSMO 5.1 + TERRA_URB

- Based on current development version → Positive Vote from CSSM and CSMC for standard implementation in COSMO
- Workshop held on 3-5 November 2014
- Implementation Test Version (TV) is ongoing

Steps of Code Development for CLM Community model versions Date: 24.8.2012

Contact the Technical Advisory Group in the case of further questions.

SCM statusss	Steps	What to do	CSSCD Chapters	Tab. 6.1
Info1	Inform the CLM-Community coordination group about your plans	Contact a member of the <u>CLM coordination group</u> . Add information about the intended development to the <u>CLM topic browser</u> .	2.2 6.1	1
	Get a released version	Download a version available from the CLM-Community home page <u>Model</u> <u>System Sources</u> . Contact the <u>CLM_TAG</u> if you want to use another COSMO version.		
	Implement your changes	Right from the implementation of your first changes the " <u>released version</u> " becomes a "private version". Although a private version is not subject to the conditions of the <u>COSMO-Standards for Source Code Development</u> (<u>CSSCD</u>), it is good practice to follow them right from the beginning. For new program units (FUNCTIONS, MODULES, PROGRAMS, SUBROUTINES,) use the available templates.	2.3, 4, 7, A	2.1
d-test	Pe elopment specific tests lations	The developer should define and apply some development specific tests and simulations exhibiting the effect of the code development on his or her "private version". The tests and simulations should be applicable also to the community model version in which the final implementation of the development will be included.	2.3	(3.5)
Report	Write a short	The developer summarizes the development and the development specific tests in a short report and provides it to the <u>coordination group</u> . Use the <u>development report template</u> for your report.		2.1
DV		The coordination group discusses the report and recommends the implementation in a community model version (or not).		
	Port the development into a last released version	If necessary, port the implemented and tested development in the last released version (2 nd private version). The CSSCD are mandatory now.	4, 7, A	2.1 and

					2.2
	t-test	Technical test suite	Apply the technical test suite on the 2^{nd} private version. Contact the source code administrator in order to know how to do that.	4, 7, A	3.1
		Repeat the development specific	Discuss with the responsible member of the coordination group, which		3.5
		tests and simulations	development specific simulations need to be repeated with the 2nd private		
			version, conduct the simulations, compare the effect with that of the		
_			original implementation and update the short report.		
	TV		The coordination group discusses the updated report and		
			recommends the implementation in a <u>community model version</u> (or		
			not).		
		CSSCD check	Provide the development to the source code administrator (SCA) together with the test results and the internal and process documentation. The SCA checks whether the coding rules of CSSCD are respected. In case the check is negative, the code has to be revised and the revised version has to be sent to the SCA again.	4, 5.3	3.2 and 8
	e-test	Standard evaluation suite	Contact the <u>coordinator of the evaluation group</u> . Discuss the evaluation procedure for the development. The <u>evaluation group</u> decides on and conducts the evaluation runs.		3.6
	RV		The evaluation group discusses the results and recommends the		
			implementation in a released version (or not).		
	Pres	Presentation of results	The development should be presented to the corresponding <u>CLM Working</u> <u>Group</u> , if possible during the COSMO/CLM <u>User Seminar</u> or the <u>CLM</u>	Tab 6.1, Nr.4	4

Test version COSMO 5.1 + TERRA_URB

• Upgrade EXTPAR (testing phase)

- Implementation of needed additional fields in EXTPAR 1.13:
 - ISA: Impervious Surface Area
 - roads, parking lots, buildings, driveways, sidewalks and other manmade surfaces...
 - Default source (Global): NOAA, reference year 2010, 1km resolution
 - Alternative source (Europe): EEA, reference year 2006, 100m resolution
 - AHF: Anthropogenic Heat Flux
 - Annual-mean heat emission to the atmosphere
 - **Default source**: from Flanner, 2009
 - Alternative source: Redistribution of default source at the scale of 25km according to NOAA ISA
- code is being cross-checked
- and being tested for COSMO and ICON grids

external parameter displaying inpervious surface area No scan axis displayed range: 0 to 0,291222 (0 to 0,4 shoun) Current: (i=115, j=383) 0 (x=-23,24834, y=44,69772) Quit ->1 Image: 0 to 0,291222 (0 to 0,4 shoun) Quit ->1 Image: 0 to 0,291222 (0 to 0,4 shoun) Quit ->1 Image: 0 to 0,291222 (0 to 0,4 shoun) Quit ->1 Image: 0 to 0,291222 (0 to 0,4 shoun) Quit ->1 Image: 0 to 0,291222 (0 to 0,4 shoun) Quit ->1 Image: 0 to 0,291222 (0 to 0,4 shoun) Quit ->1 Image: 0 to 0,291223 (0 to 0,4 shoun) Quit ->1 Image: 0 to 0,291223 (0 to 0,4 shoun) Quit ->1 Image: 0 to 0,291223 (0 to 0,4 shoun) Quit ->1 Image: 0 to 0,2912 (0 to 0,4 shoun) Image: 0 to 0,291 (0,00 (0,0) (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (× □ _ ↑	Ncview 1.93				X 🗆 🛧 🧱 external_parameter_CEU_NOAA_AHFNOREDISTR.
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.35 Var: ISA FR_LAND FR_ICE PLCOV_HN PLCOV_MX LAI_MN LAI_MX RSMIN URBAN FOR_D FOR_E EHIS_RAD R00TDP Z0 lon lat AHF NDVI_MAX HSURF FIS SS0_STDH SS0_THETA SS0_GAMMA SS0_SIGMA T_CL FR_LAKE DEPTH_LK SOILTYP LU_CLASS_FRACTIO ALB_DIF12 ALNID12 ALUVD12 NDVI NDVI_MRAT AER_BC12 AER_DUST12 Din: Name: Min: Current: Max: Units	displayin No scan a displayed Current: Quit 3gauss	ng impervious surfa axis d range: 0 to 0,29 (i=115, j=383) 0 ->1	external parameter ace area 1222 (0 to 0.4 shown) (x=-23.24834, y=44.69772 II → → Edit ? H 1/2 Linear Axes) Delay:	Opts Ni-lin Print	En
PLCOV_MX LAI_MN LAI_MX RSHIN URBAN FOR_D FOR_E EMIS_RAD ROOTDP Z0 lon lat AHF NDVI_MAX HSURF FIS SS0_STDH SS0_THETA SS0_GAMMA SS0_SIGMA T_CL FR_LAKE DEPTH_LK SOILTYP LU_CLASS_FRACTIO ALB_DIF12 ALNID12 ALUVD12 NDVI NDVI_MRAT AER_BC12 AER_DUST13 AER_ORG12 AER_S0412 AER_SS12 Dint:	Ó Yar:	0.05 0.1 ISA	0.is 0.2 0.25 FR_LAND FI	0.3 R_ICE	0.35 0.4	- And C
AHF NDVI_MAX HSURF FIS SS0_STDH SS0_THETA SS0_GAMMA SS0_SIGHA T_CL FR_LAKE DEPTH_LK SOILTYP LU_CLASS_FRACTIO ALB_DIF12 ALNID12 ALUVD12 NDVI NDVI_MRAT AER_BC12 AER_DUST13 AER_ORG12 AER_S0412 AER_SS12 Units		PLCOV_MX	LAI_HN LA	AI_HX	RSHIN EMIS_RAD	
T_CL FR_LAKE DEPTH_LK SOILTYP LU_CLASS_FRACTIO ALB_DIF12 ALNID12 ALUVD12 NDVI NDVI_MRAT AER_BC12 AER_DUST13 AER_ORG12 AER_SO412 AER_SS12 Units		AHF SS0_STDH	NDVI_MAX H	SURF	FIS SSO_SIGMA	
NDVI NDVI_MRAT AER_BC12 AER_DUST13 AER_ORG12 AER_S0412 AER_SS12 Din: Name: Min: Current: Max: Units		T_CL LU_CLASS_FRACTIO	FR_LAKE DEF	PTH_LK	SOILTYP Aluyd12	
Din: Name: Min: Current: Max: Units		NDVI AER_ORG12	NDVI_MRAT REF AER_S0412 AEI	R_8C12	AER_DUST12	
V+ plat 95.075 V 74.495 dama	Din:	Nane:	Min: Current:	Max:	Units:	
X: rlon -32.0735 -X- 52.0735 degree	X:	rlon -3	32.0735 _X_	52,0735	degrees	

× □ - 1	Ncview 1.93				X 🗆 🕈 🦲 external_parameter_CEU_NOAA_AHFNOREDISTR.nc
		external para	meter	Lower and Strand	
displayi	ng AHF annual m ean	for 2006			sm sm
No scan a	axis	C 4 4			
displayed	d range: 0 to 10.7 (i=27. i=705) 0 (644 v=-48.89176. u=58	4765)		· mark (- O'
Quit	->1. (((Edit ? Delay:	Opts	35 G P.F
3gauss	Inv P Inv C	M 1/2 Linear	Axes Range	Bi-lin Print	DA IN S
	2	4	6 8	10	
Yar:	ISA	FR_LAND	FR_ICE	PLCOV_HN	· And S
	PLCOV_MX	LAI_MN	LAI_MX	RSHIN	E To D Staten
	URBAN	FOR_D	FOR_E	EMIS_RAD	· English "- "
	ROOTDP	Z0	lon	lat	the second the
	AHF	NDVI_MAX	HSURF	FIS	1 / market
	SSO_STDH	SSO_THETA	SSO_GAMMA	SSO_SIGMA	
	T_CL	FR_LAKE	DEPTH_LK	SOILTYP	
	LU_CLASS_FRACTIO	ALB_DIF12	ALNID12	ALUYD12	
	NDVI	NDVI_MRAT	AER_BC12	AER_DUST12	
	AER_ORG12	AER_S0412	AER_SS12		
Din:	Nane:	Min: Curr	ent: Max:	Units:	
Y:	rlat 2	25.875 -	Y- 74.125	degrees	1
X:	rlon —3	32.0735 ->	K- 52.073	ō degrees	

Test version COSMO 5.1 + TERRA_URB

- Urban Upgrade INT2LM (implementation phase)
- Urban upgrade COSMO 5.1 (implementation phase)
 - Update TERRA-URB to the default prognostic TKE-Based surface-layer scheme
- Full Test Version is expected in autumn (September) this year.

Application planned with test version

 Urbanization climate scenarios for Kampala (Africa) at Lake Vicoria

Г	GLC Global Class (according to LCCS terminology)
	Tree Cover, broadleaved, evergreen
	Tree Cover, broadleaved, deciduous, closed
	Tree Cover, broadleaved, deciduous, open
	Tree Cover, needle-leaved, evergreen
	Tree Cover, needle-leaved, deciduous
	Tree Cover, mixed leaf type
	Tree Cover, regularly flooded, fresh water (& brackish)
	Tree Cover, regularly flooded, saline water
	Mosaic: Tree cover / Other natural vegetation
	Tree Cover, burnt
	Shrub Cover, closed-open, evergreen
	Shrub Cover, closed-open, deciduous
	Herbaceous Cover, closed-open
	Sparse Herbaceous or sparse Shrub Cover
	Regularly flooded Shrub and/or Herbaceous Cover
	Cultivated and managed areas
	Mosaic: Cropland / Tree Cover / Other natural vegetation
	Mosaic: Cropland / Shrub or Grass Cover
	Bare Areas
	Water Bodies (natural & artificial)
	Snow and Ice (natural & artificial)
	A stiff of a second and a second and a second and a second

Thank you for your attention!

COSMO / CLM / ART - User Seminar 2015

Offenbach, March 2 – 6, 2015