

Decadal Predictions for Europe

Hendrik Feldmann and the MiKlip People

COSMO/CLM/ART User Seminar 2016 Offenbach

MiKlip II Module C

Outline

- Predictability for Europe
- The MiKlip Decadal Prediction System
 - **Development stages of MiKlip**
- What can we expect from regionalized decadal predictions?
 - Examples

Potential Predictability over Europe on Decadal Time-scales

Decadal Change Rates [K/Decade] Europe

Global average surface temperature change 6.0 **Daily Weather** Seasonal to ~1 Year Decadal Multi-Decadal to Century Forecasts Outlooks Predictions **Climate Change Projections** historical RCP2.6 time scale 4.0 **RCP8.5** 39 Initial Value Problem Q 2.0 Forced Boundary **Condition Problem** 42 0.0 32 1 -2.0 1950 2000 2050 2100 0.8 0.6 0.4 K/decade 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 Detrended Climate Trend Exp. Trend *HadCRUT4 1880-2014 de-trended Temperature 20th Century 21st century (S.D.)* standard deviation 10yr change rates

Multi-Decadal Variability in Europe Temperature 1880 - 2010

Temperature: HadCRUT4 (9-year mean) AMO Index: NOAA ESRL (9-year mean) Forcings: NASA GSFC

Uhlig (2016)

Decadal Prediction Ensembles in MiKlip

MiKlip Ensemble System (Global: MPI-ESM) Annual Starting Years 1961 – 201x

Baseline0 b0 (=CMIP5)	Baseline1 b1	Prototype	Prototype pr		DS4 (planned 2016)	
 MPI-ESM-LR 3(10) member Initialization Ocean: Anomaly T&S from NCEP forced MPIOM 1-day time lagged init. 	 LR 10 member MR 5 member Initialization Ocean: Anomaly ORA S4 Atmosphere: Full field ERA 	 LR 2x15 member Initialization Ocean: Full field ORA S GECC Atmosphe Full field ERA 	 LR 2x15 member Initialization Ocean: Full field ORA S4 GECCO2 Atmosphere: Full field ERA 		 HR 10 member Initialization Ocean: Anomaly ORA S5 Atmosphere: Full field ERA 	
MPI-ESM = ECHAM6 + MPI-OM + JSBACH		MPI-ESM- LR MR HR	Atmosphere T63L47 T63L95 T127L95		Ocean 1.5° L40 0.4° L40 TP 0.4° L40 TP	
7 07.03.2016 Regional D	ecadal Predictions for Europe			FONA Decedal Climate Prediction	Federal Minie MiKlip	

Regional Downscaling of Initialized Hindcast Ensembles

- Hindcast generations b0, b1
- DS4 Ensemble:
 - CCLM5.0_7
 - CORDEX-EU 0.22°
 - Focus on Europe

- Global forcing: MPI-ESM decadal prediction ensemble
- Annual 10yr hindcasts 1961 2012
- Ensemble size up to 10 member
- 2 downscaling methods
 - Dynamical downscaling with 2 RCMs (COSMO-CLM and REMO)
 - Statistical-dynamical downscaling (COSMO-CLM)
- Resolution 0.44°/0.22° (Cordex-EU) and 0.0625° (Central Europe)
- Soil initialization from long-term simulations with ERA forcing
- MiKlip I: Europe, Africa, CANA

Results:

Predictive skill for Europe and added value of downscaling

Hindcast skill of decadal predictions Annual mean temperature T_{2m} lead years 2-5 (1961-2012) Anomaly correlation MPI-ESM-LR vs. HadCRUT3v sim. year simulations start year **b0** lead time lead time 2-5 1 **b1** Pohlmann et al. (2013, GRL) -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 07.03.2016 **Regional Decadal Predictions for Europe** FONA 10

Hindcast skill of decadal predictions Annual mean temperature T_{2m} lead years 2-5 (1961-2012) Anomaly correlation MPI-ESM-LR vs. HadCRUT3v sim. year simulations start year **b0** lead time lead time 2-5 1 60°N **b1** 0° Pohlmann et al. (2013, GRL) -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 07.03.2016 11

Regional Decadal Predictions for Europe

Initialized vs. un-initialized ensembles

Anomalies 4-year mean temperature [K] Mediterranean RCM b1 Lead-Time 2-5 and Un-Initialized CCLM Ensemble

CCLM 4.8_17, 0.44°, 7 member, forcing MPI-ESM-LR historical

Initialized vs. un-initialized ensembles

Anomalies 4-year mean temperature [K] Mediterranean RCM b1 Lead-Time 2-5 and Un-Initialized CCLM Ensemble

Regional skill of the RCM ensemble

Example: MSESS annual temperature lead-time 2-5 years CCLM b1 ensemble; st. yrs 1961 - 2003 vs. E-Obs

Statistical-Dynamical Downscaling Example: Wind Energy Potential PRODEF

Downscaling all **MPI-ESM** ensemble generations with **CCLM-SDD**

E_{out} [10³ MWh/year] climatological mean 1979 – 2010 SDD driven with ERAInterim

Reyers et al., Int J Clim, Marotzke et al. (BAMS, 2016)

Conclusions

- Decadal predictions offer an opportunity to test and improve our understanding of (natural) climate variability – important for the detection and attribution of climate change
- It might offer some valuable information several years ahead
- Regional downscaling offers a better link to users of climate information
 - Typically slightly increased accuracy of downscaling compared to the GCM for mean quantities, but often improved reliability
 - For extremes there is a higher potential for added value of regional downscaling (e.g. heavy precipitation, temperature extremes, wind gusts)
 - The downscaling enables additional applications (e.g. wind energy)

