

Impact of model resolution and urban parameterization on urban climate simulation: a case study for Zürich

Gianluca Mussetti *(1, 2), D. Brunner (1), S. Henne (1), J. Allegrini (2, 3), H. Wouters (4), S. Schubert (5) and J. Carmeliet (2,3)

(1) Laboratory for Air Pollution / Environemantal Technology, Empa, Switzerland

- (2) Laboratory for Multiscale Studies in Building Physics, Empa, Switzerland
- (3) Chair of Building Physics, ETH Zürich, Switzerland
- (4) Dept. Earth and Environmental Science, KU Leuven, Belgium
- (5) Geography Department, Humboldt University Berlin, Germany

* <u>gianluca.mussetti@empa.ch</u> – COSMO/CLM/ART User Seminar 2016

Modelling the urban atmosphere

- Multiscale problem
 - Urban Boundary Layer
 - Roughness Sub-Layer
 - Urban Canopy Layer

From Grimmond et al., 2006

- Modifications of the energy budget
 - I: radiation trapping (short wave)
 - II: radiation trapping (long wave)
 - III: greater heat storage
 - IV: limited latent heat fluxes
 - Others

State of the Art

Actual studies

- Large cities -> model resolution 2-1 km
- Urban parameterization of differnet complexity

Questions

- Impact of model resolution
- Impact of urban canopy model complexity

Experiment set-up

COSMO CLM v5.0

- Δx = 2km , 1 km , 500 m
- Domain: 100x100, 75x75, 50x50 km
- Vert. Lev = 76
- IC/BC: COSMO-2 Analysis MeteoSwiss
- Turbulence: prognostic scheme (1D)
- Urban parameterization
 - TERRA-URB (bulk)
 - DCEP (multi-layer)
- Surface observations
 - KAS Urban Downtown
 - KLO Semi-rural, Airport
- Event: Heat Wave 2015 (18days)

Urban Measurement Site

Urban canopy model: TERRA-URB

- Urban extension of TERRA-ML
 - Bulk values for thermal and radiative properties (α , ϵ , C_P)
 - Thermal roughness length parameterization
 - Impervious water-storage parameterization
 - Tile approach
- Input data required
 - Impervious Surface Area (ISA)
 res ~ 300 m
 - Antrophogenic Heat Flux (AHF)
 orig ~ 7 km reaggr. with ISA

Urban canopy model: DCEP

- Based on Building Effect Parameterization (BEP) by Martilli
 - Multi-layer model
 - Momentum, turbulence and heat
 - Extended by Schubert (2012)
- Input data required
 - 3D building model
 - Urban fraction (from ISA)
- This study
 - 4 canyon dir , 12 vertical lev
 - Urban vegetation: LAI = 3,
 PLCOV = 0.8, Z0 = 0.1 m

From Schubert, 2013

Urban input data (DCEP) for Zürich (example)

BUILDING DISTRIBUTION (roof tops) 500 m resolution

Spatial variability of T2

Time = 00 UTC, period averaged

Spatial variability of T2 (interpolated)

Time = 00 UTC, period averaged

Daily profile of T2 at KAS

TERRA-URB

Improvemet from 2 km to 1 km

DCEP

- Overestimates daytime T
- Improves linearly with resolution

UHI Intensity (COSMO_T2_KAS – T2_KLO)

Day-time

- Too strong heating (afternoon)
- Overestimation in DCEP

Night-time

- Evolution well captured
- Underestimation in TERRA-URB

Profiles of potential temperature at KAS (no observations)

👂 Empa

Materials Science and Technology

- CCLM used at various model resolution
- Heat wave event 2015 in Switzerland
- Urban canopy model of various complexity compared
 - TERRA-URB (bulk scheme)
 - DCEP (multi-layer)
- Impact of model resolution
- Impact of urban parameterization

Conclusions

- Model resolution affects extension and magnitude of UHI
 - Small scale features resolved
 - Mosaic approach interesting?
- Model resolution impacts on the model performance
 - TERRA-URB: from 2 km to 1 km resolution
 - DCEP: linear improvements from 2 km to 500 m
- Remarks
 - Sensitivity to urban surface and morphologic parameters
 - Sensitivity to urban vegetation (DCEP)
 - Further urban observations required (surface and vertical)

Thank you for your attention

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

