
New features of the common turbulence parameterization for 

COSMO and ICON 

Matthias Raschendorfer 

 scale-separated trough the constraints of specific closure assumptions 

 represented in the module TURBDIFF: now common for COSMO and ICON 

Matthias Raschendorfer CUS 2016 

 applied also as the core of surface-to-atmosphere transfer (SAT) formulation 

 2-nd order turbulence closure at level 2.5 according MY (prognostic TKE-scheme) 

Remaining Characteristics: 



 Main supplements of the revised ICON-formulation: 

 In block-data structure 

 Stronger modularization 

 Including an universal VDiff SUB for ALL main-. and half-level variables included in TURBDIFF 

 Configurable by list of switches: including current COSMO-version 

technical 

turbulence model 

SAT model 

 Vertical diffusion optionally in “ICON-mode”: 

− called together with turbulence model 

− applied to mass-centered profiles 

 Optional 3D-turbulence: 3D-wind-shear, application horizontal-diffusion coefficients  

 One additional STIC term (due to separated SGS horizontal shear circulations) reformulated and active 

 Different numerical treatment of vertical diffusion and circulation term in prognostic TKE-equation 

 Less restrictive prevention of possible singularities 

 Complete moist physics applied to surface level: SGS fog-description possible 

 Near-surface interpolation of vertical profiles in conserved variables 

 Zero-concentration condition for qi and qc at the surface: deposition of droplets 

 Substituting badly tunable parameters by functions of the model variables 

 tk(h,m)min,  pat_len,  a_hshr,  rat_sea,  alfa0,  vel_min 

empirical parameterizations 

organization in COSMO 



The 3D-extension of TURBDIFF: 

 Complete linear system of all 2-nd order equations needs to be solved without BLA in principal 

 Simplification by an analog extension of the SC-solution (similar to Smagorinsky-type schemes): 
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           is the scale interaction term shifting SKE form the circulation part of the spectrum (CKE) 

to the turbulent part (TKE) by virtue of shear generated by the circulation flow patterns. 
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The coarse resolution extension of TURBDIFF: 

 Application of turbulence approximations only to small SGS scales  

- separation of the sub grid scale flow in different classes with specific closure assumptions 

- by application of associated filter scales  

 
 turbulent budgets with additional production terms due to shear terms with respect to the 

separated sub gird scale circulation flow of 

• wake vortices by SSO (sub grid scale orography) blocking or gravity wave breaking 

                   [operational in        COSMO and ICON] 

• large separated horizontal shear vortices         [operational in                              ICON] 

• surface induced density flow patterns          [operational in        COSMO and ICON] 

• shallow and deep convection patterns          [not yet operational active]  
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 Vertical integration of effective flux densities within a Constant Flux Layer (CFL) close to the surface  

- application of the turbulence scheme at the lower model boundary 

- considering surface enlargement by land use 

- using proper vertical interpolation function of turbulent velocity scale  

 

equivalent topography   

covered by  GS-model layers 

The roughness layer extension of TURBDIFF: 

Surface-to-Atmosphere Transfer (SAT) expressed by turbulence scheme 
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now  with a laminar scaling 

parameter dependent on              

over see surfaces 
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 Roughness-layer resistance for scalars: 

 Inertial-layer resistance: 

stability- 

parameter of 
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function 
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 operational <-> new TURBDIFF (ICON-settings; ICON-like V-Diff): 
 BIAS for late Autumn 2015: 



 operational <-> new TURBDIFF (ICON-settings; ICON-like V-Diff): 
 RMSE for Autumn 2015: 



 operational <-> new TURBDIFF (ICON-settings; ICON-like V-Diff): 
 RMSE for August 2015: 



Vertical profiles at night hours (for different TURBDIFF-configurations): 

COSMO-settings 

Modified ICON-
settings and 
COSMO-like V-Diff 
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 A conclusion: 

 Too much unspecific mixing and security measures had been active before  

Double strategy: 

 Improving physical parameterizations: 

– Reduction of unspecific background mixing to the necessary minimum 

 Optimization of parameter values: 

− More specific and complete scale interaction terms 

functions of the model state o Substituting non-tunable parameters by  

dependent on regression parameters 

dependent on model parameters 

− Improving empirical/statistical parameterizations: 

Matthias Raschendorfer DWD CUS 2016 



Diagnostics of the special SAT-approach in TURBDIFF: 

• Our generalizations are due  to a direct application of the turbulence scheme 

and its generalizations: 

scale 

interaction 

terms         

additional 

shear 

reduced Ri-numbers 

for stable 

stratification 

physically based “tail” for 

stable stratification mainly at 

heterogeneous surfaces 

explicit description of the 

roughness-and laminar-

layer resistance 

substituting a specific roughness length for scalars 

being an unspecific parameter 

b) Is the scheme in accordance to a MOS solution, which is valid for a homogeneous surface? 

a) What is the effect of remaining unspecific turbulence enhancing measures? 

• The desired additional mixing for stable stratification is rather too intensive than too weak! 
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MY-like SC-solution with a quasi-diagnostic TKE-equation: 
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The revised vertical profile function in accordance with turbulence model: 
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 In accordance with MOS-solution as well as measurements (Businger-profiles) above 

homogeneous surfaces, where        MM

T FF 

• Notice:  

− Parameters of MY-scheme have been evaluated in order to match with these measured  

profile functions! 

− Artificial “long tail” substituted by decreasing            due to additional TKE-sources 

• Can this finding be confirmed by component tests for inertial layer resistance? 
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