

רם"ד

Testing & Tuning of Revised Cloud Radiation Coupling T²(RC)² PP: an Overview

Project leader: Harel Muskatel (IMS) Ulrich Blahak (DWD), Matthias Raschendorfer (DWD), Pavel Khain (IMS), Alon Shtivelman (IMS), Oliver Fuhrer (MCH), Xavier Lapillonne (MCH), Gdaly Rivin (RHM), Natalia Chubarova (RHM), Marina Shatunova (RHM), Alexey Poliukhov (RHM)

COSMO User Seminar - March 2016

1

(RC)² - Summery

• Implemented new parameterizations of optical properties of cloud droplets and cloud ice from literature based on effective radius R_e

```
optical properties = fct (qx, R_e)
```

- Extrapolation for larger R_e of snow, graupel and rain large size approximation
- N_{c0} of cloud droplets was in the past constant but now is a new tuning parameter. Also implemented: climatological estimation based on Tegen (1997) aerosol climatology. Activation of CN parameterization after Segal and Khain (2006).
- Subgrid variability factor k for grid scale clouds investigated. Now treated as a new tuning parameter.
- Uncertain properties of SGS clouds are now treated as tuning parameters

New Kinne Aerosols Climatology

• MAC-v1 : Monthly aerosol radiative properties, with global coverage at a spatial resolution of 1° (2012)

KINNE ET AL.: MAC-v1 FOR CLIMATE STUDIES

Figure 1. Seasonal average maps for the tropospheric midvisible AOD of the new MAC-v1 climatology for year 2000 conditions. Values below the labels indicate global averages.

Seasonal changes in aerosol optical thickness at 550 nm

Chubarova 2016

From Climatology to Forecast -MACC (ECMWF) Prognostic Aerosols

Tuesday 01 March 2016 00UTC CAMS Forecast t+003 VT: Tuesday 01 March 2016 03UTC

+ 3D mixing ratios

Pre-operational

Adaptation of MACC aerosols optical properties ω , β_{ext} , g to COSMO

⁹ Original data set by Alessio Bozo (ECMWF) 2015

Int2Im of 11 MACC aerosols fields

Sub-Grid Scale (SGS) Clouds

- Revision of overall estimation of cloudiness combination by information from turbulence and convection schemes
- Currently constant assumption for effective radius $R_{eff} = 5 \ \mu m$ for water and 10 μm for ice \rightarrow derive a parameterization for R_{eff} of SGSC
- SGS variability factor k "radqcfact"

Figure 6. Cloud droplet effective radius (r_{eff}) versus liquid water content (LWC) for cumulus clouds in clean marine air over the northeastern Atlantic Ocean (diamonds, Atlantic Stratocumulus Transition Experiment (ASTEX)), in urban-industrial air off on the U.S. east coast (circles, Tropospheric Radiative Forcing Experiment (TARFOX)), and in air masses dominated by smoke from biomass burning (pluses, Brazil).

COSMO Sub-Grid Scale Clouds cloud cover

1. Default radiation scheme

 $CLC = fct(QC, QI, generalized RH_{a}, convective CLC_CON)$

 $RH_{g}: blending in mixed-phase region between water and ice saturation, using prescribed ice fraction f_{ice} = linear ramp function of T between 0 (-5°C) and 1 (-25°C)$ $<math display="block">RH_{g} := (QV+QC+QI) / QV_{sat,g} = (QV+QC+QI) / (QV_{sat,water} *(1-f_{ice}) + QV_{sat,ice} *f_{ice})$ $CLC = CLC_SGS + CLC_CON * (1 - CLC_SGS)$ QX RAD = QX CON * CLC CON + max[QX SGS, 0.5*QX] * CLC SGS * (1 - CLC CON)

2. Alternative radiation scheme

 $\begin{aligned} \text{CLC} &= \text{fct}(\text{QC}, \text{QI}, \text{QV}, \text{generalized } \text{RH}_{\text{g}}, \text{convective } \text{CLC}_\text{CON}) \\ \text{RH}_{\text{g}} &:= (\text{QV}+\text{QC}) / \text{QV}_{\text{sat,water}} & \text{where: } \text{CLC}_\text{SGS} = 1.0 & \text{if } \text{QI} > 0.0 \\ \text{QC}_\text{RAD} &= \text{QCI}_\text{CON} * \text{CLC}_\text{CON} + \text{QC}_\text{SGS} * \text{CLC}_\text{SGS} * (1 - \text{CLC}_\text{CON}) \end{aligned}$

3. Alternative statistical radiation scheme

CLC = fct(QC, QI, QV, DQ, σ_{DQ} , convective CLC_CON)

 $DQ = QV + QC - QV_{sat,water}$ (saturation deficit) $\sigma_{DQ} = MIN$ [stdev. of DQ from turb., 0.001] No mixed phase yet (RH_a)

 $QC_RAD = QCI_CON * CLC_CON + QC_SGS * CLC_SGS * (1 - CLC_CON)$

Blahak , Raschendorfer 2015

Expert tuning

New radiation scheme ~ 30 new parameters: Which are most important?

Use *idealized* COSMO framework to create different cloud types

Cirrus	Stratus	Mixed phase	SGS Strato- cumulus	Shallow convective cumulus	Anvil of Cumulonimbus
p1,p2,p3,p4, p5, p7 ,p8,p9, p12,p14,p21, p22,p23,p27, p28 ,p29, p30	p1,p2,p4, <mark>p6,p13</mark> ,p15, p16,p17,p24, p25, p26,p30	p1,p2,p3,p4,p5, p6,p7,p8,p9,p12, p13,p14,p15,p16, p17,p21,p22,p23, p24,p25,p26,p27, p28,p29,p30	p2,p4,p5, <mark>p6,p13</mark> ,p15, p16,p17, <mark>p30</mark>	p2,p4,p5, <mark>p6,p13</mark> ,p15, p16,p17, <mark>p30</mark>	p1,p2,p3,p4,p5,p7,p8,p9,p12, p14,p21,p22,p23,p27,p28, p29,p30

CALMO methodology

Khain 2015

Testing the radiation code against experimental datasets

- Moscow State University Meteorological Observatory
- clear sky conditions: 15 20 cases
- cloudy conditions: 30 50 cases
- evaluate the forecast sensitivity to aerosol/cloud schemes applied in the radiative scheme: CLIRAD-SW model [Tarasova T.A., Fomin B.A., 2007], Benchmark Monte-Carlo RT model (Rublev et al., 2001), Complex of measurements at the MSU MO (Chubarova et al., 2014)

Comparison with measured data

More to come: MACC, Kinne, cloud-ratiotion schemes

Chubarova 2016

• Radiation scheme current operational call time:

- What is the optimal call to calculate the radiation fluxes?
- What happens in fast changing weather?

Optimizing Radiation scheme call time COSMO 7km

case study 23.04.2015 strong wind speed/partial cloudiness

COSMO 2.8km

COSMO 7km

COSMO 2.8 km

Monte-Carlo Spectral Integration

- Bodo Ritter work started few years ago
- Bias free random sampling of the 8 spectral bands, instead of full spectral integration over every band in each radiation time step.
- The error introduced is substantial for individual samples but is uncorrelated in time and space.

Pincus & Stevens 2009

Switchable Single/Double Precision in Radiation Scheme

- In PP POMPA most parts of COSMO were re-written to enable SP/DP. Currently only radiation scheme is run on DP regardless of the WP (working precision)
- Perform several simulation with randomly perturbed data fields → Compute number of significant digits for each grid point

Name	Size	Decimal digits	Minimum number	Maximum number
half precision	2 Bytes	3.3	10 ⁻⁵	10 ⁴
single precision	4 Bytes	7.2	10 ⁻³⁸	10 ³⁸
double precision	8 Bytes	16.0	10 ⁻³⁰⁸	10 ³⁰⁸
quadruple precision	16 Bytes	34.0	10 ⁻⁴⁹³²	10 ⁴⁹³²

Switchable Single/Double Precision in Radiation Scheme

thbt = thermal radiation at the upper boundary [w/m2] of the atmosphere

