

Contrails and Their Impact on Shortwave Radiation – A Regional Model Study

S. Gruber¹, H. Vogel¹, J. Bechtold², M. Jung², H. Pak², S. Borrmann³, M. Klingebiel³, R. Weigel³, B. Vogel¹

the party of the standard of the second second second

¹Institute of Meteorology and Climate Research, KIT ²Institute of Air Transport and Airport Research, DLR ³Max-Planck-Institute for Chemistry, Mainz / Institute for Atmospheric Physics, Johannes-Gutenberg-University, Mainz

Studying Contrails

http://www.pv-magazine.com/fileadmin/ PVI_website_pictures/ Germany_Fuerstenwalde_solar_photovoltaic_project_Image_solarhybrid_ag.jpg

Studying Contrails

115

110

105

100

95 90

LES: exact, but not applicable on

- global scale: parameterizations, averages
- 90 500 45 400 latitude Ε 300 0 200 \sim -45100 -9 230 30 30 130 130 230 30 230 130 -90 90 180 0 -180x/m x/m x/m longitude 2. .001 .002 .005 .01 .02 .05 0.2 0.5 0.1 1. [%]

Burkhardt and Kärcher, 2011

Unterstrasser, 2008

larger scale

The Model System COSMO-ART

Vogel et al., 2009 Bangert et al., 2012

Cloud Microphysics

- two moment cloud microphysics (Seifert and Beheng, 2006)
 - number and mass concentration of all hydrometeors
- six hydrometeor classes
 - water droplets
 - ice crystals
 - rain droplets
 - snow flakes
 - graupel
 - 🛯 hail

Cloud Microphysics

- two moment cloud microphysics (Seifert and Beheng, 2006)
 - number and mass concentration of all hydrometeors
- six hydrometeor classes
 - water droplets
 - ice crystals
 - rain droplets
 - snow flakes
 - graupel
 - 🛯 hail

Cloud Microphysics

- two moment cloud microphysics (Seifert and Beheng, 2006)
 - number and mass concentration of all hydrometeors

Diameter in µm

A Parameterization for Contrails

Data Set

Provided by Institute of Air Transport and Airport Research, DLR

4°E

6°E

8°E

10°E

12°E

14°E

Data Feed:

Flight tracks, 2013/12/03 08-16 UTC 2°E 4°E 6°E 8°E 10°E 12°E 14°E 16°E 18°E 54°N 54°N -52°N 52°N 50°N 50°N 48°N 48°N 46°N 46°N

16°E

Case Study, 2013/12/03

Comparison Reference and Contrails

2013/12/03 12 UTC

Contrail Microphysical Properties

2013/12/03 10 UTC, 10 000 m
max. contrail age: 2 h

Contrail Effect on Short Wave Radiation

2013/12/03

Summary

- unique, high resolved data set of real time based flight tracks
- parameterization of contrail formation vortex dynamics
- new contrail ice class in a two moment microphysics scheme
- simulations of contrail life cycle and contrail cirrus
- validation with measurement: microphysics in reasonable agreement
- impact on sw-radiation budget (local reductions up to 10%)

Effect on Natural Cirrus

2013/12/03, 12 UTC: Additional ice mass due to contrails

