

Parameterising Contact Ice Nucleation

L. B. Hande, <u>C. Hoose</u>, and C. Barthlott

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH

Heterogeneous Ice Nucleation Modes

Heterogeneous Ice Nucleation

Stratiform

Convective

Orographic

Existing aerosol-dependent parameterisations:

- Niemand et al. (2012) / Ullrich et al (subm.) for immersion freezing on dust.
- Steinke et al. (2015) / Ullrich et al (subm.) for deposition nucleation on dust and soot
- What about contact nucleation?

Parameterising contact nucleation $= + \bigcirc \longrightarrow = 2$

$$\frac{dN_{INP}}{dt} = \iint K_{coll} \times N_r \times nFE \times A_a \times N_a dadr$$

$$K_{coll} = \pi (r+a)^2 \times CE \times \left| V_r - V_a \right|$$

5

Parameterising contact nucleation

Normalised Freezing Efficiency:

Temperature dependent fit from laboratory data.

$$\frac{dN_{INP}}{dt} = \iint K_{coll} \times N_r \times nFE \times A_a \times N_a dadr$$

$$K_{coll} = \pi (r+a)^2 \times CE \times \left| V_r - V_a \right|$$

Collection Efficiency:

Theoretical expressions including Brownian motion, Phoretic forces, inertial impaction, electrical effects.

Theoretical Collision Efficiency

Theoretical Collision Efficiency: Drop Radius

Theoretical Collision Efficiency: Drop Radius

Theoretical Collision Efficiency: Drop Radius

Theoretical Collision Efficiency: Charge Effect

Wang et al (1978), Park et al (2005), Wang et al (2010)

Theoretical Collision Efficiency: RH

Parameterising contact nucleation

Normalised Freezing Efficiency:

Temperature dependent fit from laboratory data.

$$\frac{dN_{INP}}{dt} = \iint K_{coll} \times N_r \times nFE \times A_a \times N_a dadr$$

$$K_{coll} = \pi (r+a)^2 \times CE \times |V_r - V_a|$$

Collection Efficiency:

Theoretical expressions including Brownian motion, Phoretic forces, inertial impaction, electrical effects.

Parameterising contact nucleation

 $nFE = \frac{1}{A_a} \frac{\# freezing \ events}{\# \ collisions}$ Normalised Freezing Efficiency: **Temperature** dependent fit from A_a : aerosol surface area laboratory data. $\frac{dN_{INP}}{dt} = \iint K_{coll} \times N_r \left(\times nFE \right) \times A_a \times N_a dadr$ $K_{coll} = \pi (r+a)^2 \times CE \times |V_r - V_a|$ **Collection Efficiency:**

> Theoretical expressions including Brownian motion, Phoretic forces, inertial impaction, electrical effects.

Laboratory Freezing Efficiency for different mineral dusts

Contact freezing experiments show enormous scatter

Solid line:

 $nFE = A \exp(-B \times T)$

Dashed line: Alternative fit for sensitivity studies

Contact Nucleation Rate: Drop & Aerosol Radius

Contact Nucleation Rate: Temp & RH

Preliminary results: Semi Idealised Convective Cloud

- COSMO model run with very high horizontal resolution (110 m) of a deep convective cloud.
- New contact ice nucleation parameterisation, Niemand et al. (2012) immersion freezing, and Steinke et al. (2015) deposition nucleation parameterisations.
- Sensitivity studies:
 - Soluble fraction of dust
 - Effect of electric charges
 - Temperature dependant fit
 - Comparison to other contact parameterisations

Model Configuration

Initial sounding based on soundings at Idar-Oberstein, Essen and Beauchevain, 23.7.2013, with **1889** J/kg CAPE **Real terrain** from Juelich, Germany

Convection triggered by solar heating.

Cloud Evolution

Cloud Evolution

Dust and droplet size distributions

2 mode log-normal distribution for dust aerosol particles (fitted to observations at JFJ; prescribed) gamma distribution for droplets predicted by the 2-moment scheme (in-cloud mean)

-> divided into 10 size bins for numerical integration

Modeled INP fraction

At ~260 K, both contact and immersion freezing contribute about 50%.

1.0

1.0

At ~250 K, immersion dominates (>80%) however contact still occurs (<20%).

At <230 K, supersaturation</p> too small for deposition nucleation to be significant.

Sensitivity experiments

Sensitivity experiments

Name	Contact	Immersion	Deposition
	$\frac{1 \text{NP} (\text{m}^{-3})}{2 4 2 \times 10^4}$	$\frac{\text{INP} (\text{m}^{-3})}{2.62 \times 106}$	$\frac{\text{INP} (\text{m}^{-3})}{2.20 \times 10^{1}}$
Wet Dust	2.42×10^{-1}	$2.03 \times 10^{\circ}$	8.30×10^{-5}
Dry Dust	6.51×10^{4}	1.78×10^{5}	6.14×10^{1}
Charge	7.0×10^4	2.92×10^{5}	$2.39{ imes}10^1$
Low nFE	5.0×10^1	2.13×10^{6}	$6.65{ imes}10^1$
Meyers	6.6×10^{1}	2.00×10^{6}	8.23×10^{1}

Conclusions

- A new aerosol-surface-area-dependent parameterisation for contact ice nucleation has been implemented into COSMO.
 - Dependencies on temperature, relative humidity, aerosol and droplet number, size, and electric charge.
 - Under certain conditions, contact nucleation can dominate over other modes.
 - To accurately estimate contact nucleation, in-cloud aerosol has to be treated explicitly.
- Preliminary semi-idealised convective cloud simulations:
 - Moderate sensitivity to aerosol solubility, low sensitivity to electrical effects, high sensitivity to freezing efficiency data.
 - Overall, immersion freezing dominates, followed by contact nucleation.
 - Not high enough supersaturations for deposition nucleation to be significant.

Cloud Evolution

Modeled INP concentrations

Heterogeneous Ice Nucleation Comparison

