

Assimilation cycle in observation-sparse regions

Pavel Khain, Alon Shtivelman, Anat Baharad, Harel Muskatel and Yoav Levi

Israel Meteorological Service

COSMO User Seminar, Offenbach, March 2016

This winter upgrade

IMS to Pavel: 100 cm official ruler for snow

Last winter

30 cm ruler Last winter 25 cm snow depth measured in Jerusalem !

This winter

0!

Outline

- 1. COSMO model at Israel Meteorological Service
 - a. Overview
 - b. Main problem loss of humidity
 - Consequence in assimilation cycle the model dries up if not enough in observations assimilated
- 2. Technical solution for observation sparse regions:

Each run CHOOSE cold start/warm start depending on fast verification

- a. Example
- b. Method
- c. Results
- 3. Conclusions

Outline

1. COSMO model at Israel Meteorological Service

. Overview

- b. Main problem loss of humidity
- Consequence in assimilation cycle the model dries up if not enough in observations assimilated
- 2. Technical solution for observation sparse regions:

Each run CHOOSE cold start/warm start depending on fast verification

- a. Example
- b. Method
- c. Results
- 3. Conclusions

DOMAINS

Operational version (IFS driven)

Test version (IFS driven)

GrADS: COLA/IGES

Test version (ICON driven)

GrADS: COLA/IGES

4 times a day assimilation cycle

Operational version (IFS driven) :

Test version (IFS driven) :

Latent Heat Nudging

Example:

COSMO forecast from 23/2/2016 00 UTC +6h till +12h

RADAR

COSMO 2.8km with LHN

COSMO 2.8km without LHN

Achievements

Achievement 1: better night time temperature profile

Thanks to Ines Cerenzia, Uli Blahak, Matthias Raschendorfer!

Main problem of IMS COSMO:

loss of humidity (→ less rain) during forecast, especially at the decay stage of a cyclone

Increased evaporation from sea and land by reducing rlam_heat from 1 to 0.75 ...

Reference (rlam_heat=1)

TCW(COSMO) - TCW(IFS) (kg/m^2) , average = 0.2389 -1 -2 -3

High evaporation from sea (rlam_heat=0.1)

TCW(COSMO) - TCW(IFS) (kg/m²), average = 0.2389

EXAMPLE:

COSMO forecast from 18/1/2016 18 UTC +...

Slightly more evaporation from sea (rlam_heat=0.1)

Domain averaged TCW(COSMO) – TCW(IFS)

Forecast range (h)

Domain averaged TCW(COSMO) – TCW(IFS)

Forecast range (h)

Domain averaged TCW(COSMO) – TCW(IFS)

Forecast range (h)

Consequence: Better precipitation forecast

Achievement 2: better precipitation forecast

Example: COSMO forecast from 25/1/2016 12Z+...

Achievement 2: better precipitation forecast

Example: COSMO forecast from 25/1/2016 12Z+...

Achievement 2: better precipitation forecast

Example: COSMO forecast from 25/1/2016 12Z+...

Which precipitation species did we have ?

forecast in mountains

Outline

1. COSMO model at IMS

- a. Overview
- b. Main problem loss of humidity
- Consequence in assimilation cycle the model dries up if not enough in observations assimilated
- 2. Technical solution for observation sparse regions:

Each run CHOOSE cold start/warm start depending on fast verification

- a. Example
- b. Method
- c. Results
- 3. Conclusions

HOWEVER

- 1. Does rlam_heat=0.75 give the correct evaporation ? (We plan to compare COSMO evaporation rates with IFS/ICON)
- 2. Slight evaporation increase does not always yield enough water vapor in region of interest

Example: 31/12/2015 12UTC +...

2015/12/31 12UTC + 00h

mm/6h

0.5 70.1

2015/12/31 12UTC + 03h

mm/6h

0.5 70.1

2015/12/31 12UTC + 06h

mm/6h

0.5 70.1

2015/12/31 12UTC + 09h

mm/6h

0.5 70.1

2015/12/31 12UTC + 12h

mm/6h

0.5 70.1

2015/12/31 12UTC + 15h

mm/6h

0.5 70.1

2015/12/31 12UTC + 18h

mm/6h

0.5 70.1

2015/12/31 12UTC + 21h

mm/6h

0.5 70.1

2015/12/31 12UTC + 24h

mm/6h

0.5 70.1

2015/12/31 12UTC + 27h

mm/6h

0.5 70.1

2015/12/31 12UTC + 30h

mm/6h

0.5 70.1

2015/12/31 12UTC + 33h

mm/6h

0.5 70.1

2015/12/31 12UTC + 36h

Outline

- 1. COSMO model at IMS
 - a. Overview
 - b. Main problem loss of humidity

c. Consequence – in assimilation cycle the model dries up if not enough in observations assimilated

2. Technical solution for observation sparse regions:

Each run CHOOSE cold start/warm start depending on fast verification

- a. Example
- b. Method
- c. Results
- 3. Conclusions

Soundings in COSMO-IL domain

If not enough observations, not tuned model diverges...

Outline

- 1. COSMO model at IMS
 - a. Overview
 - b. Main problem loss of humidity
 - Consequence in assimilation cycle the model dries up if not enough in observations assimilated

Technical solution for observation sparse regions:

Each run CHOOSE cold start/warm start depending on fast verification

- a. Example
- b. Method
- c. Results
- 3. Conclusions

COLD START MAY HELP

The same example (again): 31/12/2015 12UTC +...

2015/12/31 12UTC + 00h

mm/6h

0.5 70.1

mm/6h

0.5

2015/12/31 12UTC + 06h (with nudging)

mm/6h

0.5

2015/12/31 12UTC + 09h (with nudging)

mm/6h

0.5

2015/12/31 12UTC + 12h (with nudging)

2015/12/31 12UTC + 15h (with nudging)

mm/6h

0.5 70.1

2015/12/31 12UTC + 18h (with nudging)

mm/6h

0.5 70.1

2015/12/31 12UTC + 21h (with nudging)

COLD START

2016/1/1 12UTC + 00h

2015/12/31 12UTC + 24h (with nudging)

COSMO

2016/1/1 12UTC + 03h (with nudging)

2016/1/1 12UTC + 06h (with nudging)

Outline

- 1. COSMO model at IMS
 - a. Overview
 - b. Main problem loss of humidity, example, possible solutions
 - c. Consequence in assimilation cycle the model dries up if not enough in observations assimilated

Technical solution for observation sparse regions:

Each run CHOOSE cold start/warm start depending on fast verification

a. Example

- c. Results
- 3. Conclusions

Technical solution for observation-sparse regions

(thanks to Harel Muskatel)

Automatic choice between Warm Start and Cold Start using "analysis score" comparing to observations (sounding profiles)

If the previous forecast was bad, it will be revealed and COSMO will perform Cold Start

Cold Start / warm start analysis score

 $RMSE_T$ - (Weighted) root mean square error of the model T profile against the sounding

Outline

- 1. COSMO model at IMS
 - a. Overview
 - b. Main problem loss of humidity, example, possible solutions
 - Consequence in assimilation cycle the model dries up if not enough in observations assimilated
- 2. Technical solution for observation sparse regions:

Each run CHOOSE cold start/warm start depending on fast verification

- a. Example
- b. Method c. Results
- 3. Conclusions

Warm start / Cold start score for COSMO-IL (1/2016-3/2016)

Warm start / Cold start score for COSMO-IL (1/2016-3/2016)

Percent of warm starts

	Score	Score _T	Score _Q	Score _w
Total	24%	23%	39%	12%
Night	12%	12%	22%	2%
Day	35%	33%	53%	20%

The best:Specific humidity at daysThe worst:Wind and nights

Outline

- 1. COSMO model at IMS
 - a. Overview
 - b. Main problem loss of humidity, example, possible solutions
 - Consequence in assimilation cycle the model dries up if not enough in observations assimilated
- 2. Technical solution for observation sparse regions:

Each run CHOOSE cold start/warm start depending on fast verification

- a. Example
- b. Method
- c. Results

Conclusions

- 1. COSMO model at IMS
 - 4 times a day assimilation cycle + latent heat nudging
 - Main problem loss of humidity, especially at the decay stage of a cyclone
 - Consequence in assimilation cycle the model dries up if not enough in observations assimilated
- 2. Technical solution for observation sparse regions:

Each run CHOOSE cold start / warm start depending on fast verification

Thank you !

Additional slides...

Example for 21/2/2016 00UTC+... where warm start is better

+0h

+3h

+9h

+12h

+15h

0.5

0.1

+18h

+21h

0.5

0.1

+24h

0.5

0.1