

Large-scale secondary circulations in the COSMO-CLM

Nico Becker Institut für Meteorologie Freie Universität Berlin

COSMO / CLM / ART User Seminar 2016 Offenbach, 09.03.2016

Motivation

What is the aim of an RCM?

• "[...] having **fine-scale features** at scales that are absent in the initial and lateral boundary conditions." (*Antic 2004*)

However...

- RCM simulations also show **large-scale deviations** from the driving data!
- Controversial discussion whether this is desired in RCMs (e.g. von Storch et al. 2000)
 - → RCMs are able to improve the large scales (Diaconescu et al. 2013)
 - But large-scale deviations can cause problems at the lateral boundaries

Which mechanisms are responsible for large-scale deviations of RCMs from their driving data?

Outline

1) Splitting of the RCM wind fields

Definition of the Primary and Secondary Circulation (SC)

2) Does the SC depend on the large-scale flow?

m

3) Does the SC depend on the location of the lateral boundaries

CCLM 4.8 ensemble simulations with different model configurations

1.2 The Secondary Circulation

40-year average at 500 hPa

• Wind vector difference (RCM-GCM) \rightarrow Secondary circulation

2.1 Clustering approach

Does the secondary circulation depend on the large-scale flow?

Step 1:

- Clustering of the large scale flow
- <u>Method:</u>
 - Simulated Annealing and Diversified Randomization (Philipp et al. 2007)
 - → Clusteranalysis based on k-means
- Data used for clustering:
 - Primary Circulation (GCM)
 - → ECHAM5 GPH at 500 hPa

13 clusters, 500 hPa, for DJF

Step 2:

• Calculating the average SC fields for each cluster of the large-scale flow

2.2 Clustering approach

Cluster (a) with the strongest SC (500 hPa)

2.3 Clustering approach

Cluster (a) with the strongest SC (500 hPa)

- Geopotential height (GCM)
- → Secondary circulation (RCM-GCM)
- Wind speed differences (RCM-GCM)

2.4 Driving mechanism

Thought experiment

- Idealized 2D model domain
- Solid boundaries
- Non-rotating system
- Accelleration in the center
- A "balancing flow" evolves

How does the loaction of the model boundaries affect the SC?

У

_1

-2

-3

CCLM 4.8 simulations with different model configurations

- incremental shifts of the eastern model boundary
- incremental shifts of the southern model boundary
- •

How to select an appropriate simulation period?

Shifting the eastern boundary **Standard domain – 64 grid boxes** 5 GPH [gpdm] 3 maximum GPH anomaly Ĕ–64 E-32 REF E+32 E+64 E+96 3 6 5 SZI [m/s] 3 average strenght of the 2 -5 0 5 secondary circulation 1 gpdm 0└── E-64 E-32 REF E+32 E+96 Geopotential height (GCM) E+64 Modellkonfiguration Secondary circulation (RCM-GCM) GPH difference (RCM-GCM)

Large-scale secondary circulations in the COSMO-CLM

Freie Universität

Berlin

Large-scale secondary circulations in the COSMO-CLM

Freie Universität

Berlin

Large-scale secondary circulations in the COSMO-CLM

Large-scale secondary circulations in the COSMO-CLM

Summary

- A secondary circulation exists in COSMO-CLM relative to the forcing data
- **Driving mechanism** of the secondary circulation:
 - → Modifications of the mass flux in the RCM
 - → e.g. due to different orographic drag effects
 - Mass flux modifications cannot exit the RCM
 - A balancing flow develops
- "Added value" and "artefacts" of the RCM are directly linked via the SC
 - added value \rightarrow effects of a higher resolution
 - $\boldsymbol{\textbf{\rightarrow}}$ artefacts \rightarrow interaction with the model boundary

Is the secondary circulation relevant for regional climate modelling in general?

Discussion and Outlook

• Common assumption:

→ Boundary effects occur in areas "close to the lateral boundaries"

• The SC demonstrates:

- The lateral boundaries affect the simulations within the whole domain!
- → Is it necessary to run RCM ensembles with different positions of the boundaries?
- The driving mechanisms indicate that the SC is a **general feature of all one-way nested RCMs**
- The effects of the SC have a similar order of magnitude as **climate change signals**
- It could be useful to include the SC into the **evaluation process of RCMs**

Publications:

- Becker et al. 2015: Large-scale secondary circulations in a regional climate model, *Geophys. Res. Lett., 42 (<u>http://onlinelibrary.wiley.com/doi/10.1002/2015GL063955/abstract</u>)*
- Becker 2015: Großskalige Sekundärzirkulationen im regionalen Klimamodell COSMO-CLM, *PhD-Thesis* (<u>http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000101443</u>)