Urban effects on summertime air temperature in Germany under climate change

Sebastian Schubert¹, Susanne Grossman-Clarke², Daniel Fenner³

¹Humboldt-Universität zu Berlin, Geography Department
 ²Potsdam Institute for Climate Impact Research
 ³Technische Universität Berlin, Department of Ecology

COSMO/CLM/ART User Seminar 2016

Contents

Motivation and approach

Identification of analysed summers

Urban effects under climate change

Summary

Motivation

How do urban effects on air temperature change under climate change in Germany?

Motivation

How do urban effects on air temperature change under climate change in Germany?

Approaches:

- global and regional climate ensembles
 → robust predictions but no (sufficiently detailed) urban effects
- RCM simulations at urban scale / urban models
 - → computationally expensive
 - \rightarrow either applied offline (e.g. Lemonsu et al. 2013) or online (e.g. Hamdi et al. 2014)

Reduction of computational demand of RCM simulations

Relevance without simulating 30 years historical and 30 years future for several GCMs?

Reduction of computational demand of RCM simulations

Relevance without simulating 30 years historical and 30 years future for several GCMs?

Pseudo global warming method (Kimura and Kitoh 2007):

average projected monthly warming added to the boundary conditions from reanalysis

Cuboid method (Früh et al. 2011):

linearly interpolate between idealized simulations that envelope possible urban weather

Reduction of computational demand of RCM simulations

Relevance without simulating 30 years historical and 30 years future for several GCMs?

Pseudo global warming method (Kimura and Kitoh 2007):

average projected monthly warming added to the boundary conditions from reanalysis

Cuboid method (Früh et al. 2011):

linearly interpolate between idealized simulations that envelope possible urban weather

Our approach:

- focus on summer time (JJA)
- analyse average conditions
- 3 driving CMIP5 GCMs (RCP 8.5): CNRM-CM5, HadGEM2-ES, MPI-ESM-LR

- minimum, mean and maximum 2 m temperature percentiles averaged over Germany
- reference data: e.g. observation E-OBS gridded dataset (version 10.0)
- reference period: historical (1976–2005), future (2031–2060)

- minimum, mean and maximum 2 m temperature percentiles averaged over Germany
- reference data: e.g. observation E-OBS gridded dataset (version 10.0)
- reference period: historical (1976–2005), future (2031–2060)
- calculate temperature percentiles for reference data during total reference period (min, mean, max)

- minimum, mean and maximum 2 m temperature percentiles averaged over Germany
- reference data: e.g. observation E-OBS gridded dataset (version 10.0)
- reference period: historical (1976–2005), future (2031–2060)
- calculate temperature percentiles for reference data during total reference period (min, mean, max)
- calculate same temperature percentile for each GCM during each year of reference period separately

- minimum, mean and maximum 2 m temperature percentiles averaged over Germany
- reference data: e.g. observation E-OBS gridded dataset (version 10.0)
- reference period: historical (1976–2005), future (2031–2060)
- calculate temperature percentiles for reference data during total reference period (min, mean, max)
- calculate same temperature percentile for each GCM during each year of reference period separately
- select year for each GCM that minimizes average mean-square-deviation between percentiles of 1 und 2

Identification of analysed summers Observed

Observation based

Observation reference data: E-OBS (1976–2005)

2m air temperature T_x/K

Identification of analysed summers Obse

Observation based

Observation reference data: E-OBS (1976–2005)

2m air temperature T_x/K

Identification of analysed summers

Observation reference data: E-OBS (1976–2005)

Climate change signal (CCS) 1976–2005 \rightarrow 2031–2060

Climate change signal (CCS):

- 1976–2005 → 2031–2060
- percentile based
- 18 CMIP5 GCMs (lines)

ensemble average CCS (black dots) added to observation percentiles Identification of analysed summers Ob

E-OBS (1976–2005) + CCS(1976–2005 \rightarrow 2031–2060)

E-OBS (1976–2005) + CCS(1976–2005 \rightarrow 2031–2060)

Average model reference data: historical (1976–2005)

Average model reference data: future (2031–2060)

Average model reference data: future (2031–2060)

COSMO-CLM set-up

- Version 4.8 clm19
- Nesting steps: • grid-spacing of 0.22°, 0.065° and 0.025°
- Finest nesting step:
 - Urban parametrization DCEP (Schubert et al. 2012)
 - 50 vertical levels

Set-up

Urban parameters

Parameters from CORINE land-use data: e.g. urban fraction $f_{\rm u}$

Urban parameters

Parameters from CORINE land-use data: e.g. urban fraction $f_{\rm u}$

- Urban cluster ($f_{\rm u} > 5\%$):
- urban core: $f_{\rm u} > 50 \%$ •
- rural reference area: • boundary of cluster

Definitions

- Average properties of urban core or rural reference area: e.g.
 2 m temperature T_u or T_r
- Urban heat island intensity:

$$\Delta T_{\rm u-r} = T_{\rm u} - T_{\rm r}$$

Rural Bowen ratio:

$$\beta_{\rm r} = H_{\rm r}/\lambda E_{\rm r}$$

Error estimation: bootstrap; error bars represent standard deviation of average of bootstrap samples

Urban heat island intensity

Results

Climate change signal of urban heat island intensity

Climate change signal of rural Bowen ratio

Summary

- Topic: urban effects under climate change (1976–2005 to 2031–2060) of 9 largest German metropolitan areas
- Analysed single summers of three GCMs representing average summer conditions (in terms of observations and GCM conditions)
- City ensemble's summer mean hourly climate change signal of urban heat island intensity: -0.13 K to 0.16 K
- Importance of driving GCM: GCM determines characteristics of
 - urban heat island intensity
 - urban heat island climate change signal
 - surface energy fluxes
- Details in upcoming paper: Grossman-Clarke et al. (2016) in *International Journal of Climatology*

Summary

- Topic: urban effects under climate change (1976–2005 to 2031–2060) of 9 largest German metropolitan areas
- Analysed single summers of three GCMs representing average summer conditions (in terms of observations and GCM conditions)
- City ensemble's summer mean hourly climate change signal of urban heat island intensity: -0.13 K to 0.16 K
- Importance of driving GCM: GCM determines characteristics of
 - urban heat island intensity
 - urban heat island climate change signal
 - surface energy fluxes
- Details in upcoming paper: Grossman-Clarke et al. (2016) in *International Journal of Climatology*

Thank you for your attention!

Literature

- Früh, B., P. Becker, T. Deutschländer, J.-D. Hessel, M. Kossmann, I. Mieskes, J. Namyslo, M. Roos, U. Sievers, T. Steigerwald, H. Turau and U. Wienert (2011). 'Estimation of Climate-Change Impacts on the Urban Heat Load Using an Urban Climate Model and Regional Climate Projections'. In: Journal of Applied Meteorology and Climatology 50.1, pp. 167–184.
- Hamdi, R., H. Van de Vyver, R. De Troch and P. Termonia (2014). 'Assessment of three dynamical urban climate downscaling methods: Brussels's future urban heat island under an A1B emission scenario'. In: International Journal of Climatology 34.4, pp. 978–999.
- Kimura, F. and A. Kitoh (2007). Downscaling by Pseudo Global Warning Method. Research Institute for Humanity and Nature.
- Lemonsu, A., R. Kounkou-Arnaud, J. Desplat, J.-L. Salagnac and V. Masson (2013). 'Evolution of the Parisian urban climate under a global changing climate'. English. In: Climatic Change 116.3-4, pp. 679–692.
- Schubert, S., S. Grossman-Clarke and A. Martilli (2012). 'A Double-Canyon Radiation Scheme for Multi-Layer Urban Canopy Models'. In: *Boundary-Layer Meteorology* 145.3, pp. 439–468.

Backup

Temperature distribution of GCM and GCM/CCLM

Backup

Evaluation of 10 year simulation for Berlin

