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…why do we care about convection?

Direct concern

• forecast convective precipitation

• important feature of the water cycle

Feedbacks to larger scale

• changes vertical stability

• generates and redistributes heat

• removes and redistributes moisture

• makes clouds, strongly affecting surface heating and 
atmospheric radiation

dry convection dry convection

warm surface (land or water)

moist convection: upward flowing air 

currents causing clouds to form 



Convection-resolving simulations

• Clouds and convective transport partly resolved (e.g. 
Weisman et al. 1997, Hohenegger et al. 2008, Prein et al. 
2015)

• Better representation of topography and surface fields

• Improved diurnal cycle of precipitation compared to 
convection-parameterizing models (e.g. Richard et al. 
2007, Ban et al. 2014)

• Can be applied to decade-long, continental-scale climate 
simulations (e.g. Ban et al. 2014, Leutwyler et al. 2016)

Leutwyler et al. (2016) 



Convection-resolving simulations

Explicit dynamics?

The ‘grey zone’ of convection

• Fully resolving deep convection needs LES at ∆x < 100 m 

• Smallest features scale with numerical filter: solution sensitive to numerics and details of 
physical parameterizations

Traditional convection parameterization?

• Grid-box state no longer a good approximation of the “large-scale” state

• Horizontal fluxes may become important





Bulk convergence

What should be the goal of convection-resolving simulations?

at the right place, at the right time
bulk feedbacks to the larger scale 
(radiation balance, heat and water 
vapor budget, precipitation, ...)



Bulk convergence

• Numerical convergence: considers an increasingly resolved numerical representation of 
a fixed set of equations

• Physical convergence: insensitivity of flow statistics with respect to both grid spacing 
and flow physics

• External convergence: includes the influence of better-resolved external parameters 
(topography, soil variables, …) at higher resolution

“Good numerical and physical convergence of bulk (averaged 
over a large control volume centered over the Alps) properties 
of an ensemble of moist convective cells in kilometer-scale 
simulations ”

Langhans et. al (2012)

Langhans et al. (2012) 



Bulk convergence

Overarching goal

Key questions:

Understand the bulk convergence behavior of convection-resolving simulations with

respect to the feedbacks of summertime deep convection over land

• How does the representation of mass, moisture, temperature and momentum fluxes across various 

horizontal resolutions influence the distribution of precipitation, cloud cover and the radiative 

balance?

• Which physical processes and parameterizations yield better convergence properties? Does 

complex terrain (mountains) improve bulk convergence? 



x [km]

Experiments

CTRL: control run, standard case with no background wind 
(+ensemble)

WIND: CTRL + background wind (Schlemmer et al. 2012)

MOUNTAIN: CTRL + 500-m 3D gaussian hill

PRESCR: CTRL - land-surface scheme (prescribed surface 
fluxes)

NORAD: PRESCR - radiation scheme (prescribed cooling of 
2.5K/day)

Idealized simulations

Basic setup

• Diurnal cycle of convection over land 
(Schlemmer et al. 2012)

• COSMO v5.0 @ ∆x = 4, 2, 1 km and 500 m

• Domain 200 x 200 km2

• Run for 6 days, consider last 5 days for analysis

• Interactive soil model and radiation scheme

• Explicit convection, hybrid 1D TKE-based/2D 
Smagorinsky turbulence parameterization
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Surface precipitation

• All simulations show physical convergence

• MOUNTAIN shows higher degree of convergence

• WIND and NORAD: worse behavior after ∆x = 2 km



Surface radiation balance

> 100 W m-2

currently under investigation…



Surface radiation balance

• MOUNTAIN only physically convergent setup (except for SSHF)

• No significant improvement in PRESCR compared to CTRL
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Bulk heat tendencies
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Bulk water vapor tendencies
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• ADV and UNRES grid-dependent by definition

• MOUNTAIN only physically convergent setup for ATT_TOT

• Overall better performance for AQVT

• NORAD bad convergence behavior

Bulk heat and water vapor tendencies



Preliminary conclusions

• Although domain-averaged precipitation shows convergence for all simulations, the 
same does not hold for surface radiation balance and domain-averaged heat and 
moisture tendencies.

• The presence of orography improves the convergence behavior in CRM simulations 
compared to runs with flat terrain only.

• Reducing the model complexity by switching off the land-surface and radiation 
schemes does not reduce or even increases the sensitivity to the model grid spacing in 
higher-resolution simulations.



Real-case simulations

Basic setup

• Domain 1100 x 900 km2 (Langhans et al. 2012)

• COSMO v5.0 @ ∆x = 4.4, 2.2, 1.1 km and 550 m

• Soil initialized from 10-yr climate run at 12.2-km 
horizontal grid spacing (Ban et al. 2014)

• Initialized with and driven by 12.2-km run 

• Explicit convection, hybrid 1D TKE-based/2D 
Smagorinsky turbulence parameterization Surface data

GLOBE topography (1 km resolution)

GC2009 land cover (300 m resolution)

HWSD soil type (1 km resolution)

Raymond filter for topography (cutoff ~ 5 ∆x)


