ICON-A, the atmospheric component of the ICON Earth System Model

Marco Giorgetta et al. Max Planck Institute for Meteorology Hamburg

Related manuscripts

- ICON-A, the atmospheric component of the ICON Earth System Model
 - Part I: Model description

M. A. Giorgetta, R. Brokopf, T. Crueger, M. Esch, S. Fiedler, J. Helmert, C. Hohenegger, L. Kornblueh, M. Köhler, E. Manzini, T. Mauritsen, C. Nam, S. Rast, C. Reick, D. Reinert, M. Sakradzija, H. Schmidt, R. Schnur, L. Silvers, H. Wan, G. Zängl, and B. Stevens

- Part II: Model evaluation

T. Crueger, M. A. Giorgetta, R. Brokopf, M. Esch, S. Fiedler, C. Hohenegger, L. Kornblueh, T. Mauritsen, C. Nam, A. K. Naumann, K. Peters, S. Rast, E. Roeckner, M. Sakradzija, H. Schmidt, J. Vial, R. Vogel, B. Stevens

• Under review in Journal of Advances in Modeling Earth Systems (JAMES)

Contents

- The ICON-A model in a nutshell
- Grids: horizontal and vertical
- Dynamics physics coupling
- Tuning of ICON-A
- Evaluation of ICON-A
- Summary
- Outlook to ICON-ESM

ICON-A in a nutshell - Requirements

- Global atmosphere for mostly long simulations
 - Atmosphere only: AMIP, aqua planet, rad.-conv. equilibrium
 - Climate simulations: piControl, historical, abrupt4xCO2, ...
- Closed water cycle
- Realistic energy budget, especially at the top of the atmosphere
- Acceptable biases of multi-year/decadal climate
 - AMIP experiment ↔ ERA-interim + selected observations
- "Workhorse": to be used for many and inexpensive simulations
- And sometimes also at much coarser or higher resolutions
 - Climate feedback studies from $\Delta x = 2560$ km to $\Delta x = 5$ km

ICON-A in a nutshell – construction

- ICON dynamics and tracer advection
- Physics adopted from ECHAM6.3
 - Radiation: Pincus and Stevens (2013)
 - Vertical diffusion: Mauritsen et al. (2007)
 - Land surface: JSBACH4

PSrad ≈ RRTMG, used with McICA, but without McSI Total turbulent energy scheme, implicitly coupling to land

- Refactored JSBACH3, 5 layer soil, "lite" version is used
- Convection: Tiedtke (1987), Nordeng (1994) Mass flux, single plume, shallow, deep or mid-level
- Cloud microph..: Lohmann and Roeckner (1996) q, clw, cli (single moments), diagnostic rain and snow
- Cloud cover:Sundqvist et al. (1989)Profile of critical relative humidity- SSO drag:Lott (1999)Blocking, gravity wave drag
- Atm. gravity waves: Hines (1997)

- Vertical wavenumber spectra in 8 azimuths, launch level in mid troposphere, globally uniform source strength
- Methane oxidation and water vapor photolysis:: IFS documentation Cy36r1, relaxation scheme
- Dynamics physics coupling: "Similar but different" to NWP

Dynamics physics splitting in ICON

$$\boldsymbol{M} = \boldsymbol{P}(\boldsymbol{F}_{2}) \circ \left(\boldsymbol{P}(\boldsymbol{F}_{1T}) + \boldsymbol{A} + \boldsymbol{D}_{2} \circ \boldsymbol{D}_{1}^{n}(\boldsymbol{F}_{1D})\right)$$

Updating operators

- Dynamics: D₁ and D₂
- Tracer advection A
- Physics

Forcing

- F_{1D}: "slow" physics on dynamics
- F_{1T}: "slow" physics on tracers

Dynamics physics splitting in ICON-A

Updating operators

- Dynamics: D₁ and D₂
- Tracer advection A
- Physics

Forcing

- F_{1D}: "slow" physics on dynamics
- F_{1T}: "slow" physics on tracers

Horizontal grid

- **R2B4:** 5-fold refinement of the spherical icosahedron
- 20'480 spherical triangles
- 30'720 great circle edges
- 10'242 vertices, 12 with 5 triangles, at N/S and ~26°N/S All others with 6 triangles
- 96 rows around the N-S axis
- Tropical rows have 320 triangles
- Mean area \overline{a} = 24907 km²
- Mean res. $\overline{dx} = SQRT(\overline{a}) = 157 \text{ km}$
- Spring dynamics (Tomita et al., 2001) for more equal edge lengths.

Vertical grid: 47 levels to 80 km

- Smooth structure of terrain is visible to⁷⁰ higher heights than small scale rough ⁶⁰ structure.
- $z_h(\lambda,\phi,k) = A(k) + B(\lambda,\phi,k) \cdot z_s(\lambda,\phi)$ $z_f(\lambda,\phi,k) = (z_h(\lambda,\phi,k) + z_h(\lambda,\phi,k+1))/2$
- B = 1 at surface, B = 0 for z > 16 km
- ECHAM: Hybrid p-sigma: $p_h(\lambda,\phi,k) = a(k) + b(k) \cdot p_s(\lambda,\phi)$

Vertical grids of ECHAM6-LR and ICON

ICON-A tuning – Goals

- For usage in a coupled climate model
 - Near-zero energy balance at the top of the model atmosphere: ~0 – 1 W/m²
 - Vertical integral of water vapor
 - Cloud cover
 - Small errors in ocean surface stress
 - Surface pressure
 - Wind

ICON-A tuning – Experiments

- icon-tune-1
 - Parameters as in echam-6.3.04-LR
 - Except for SSO scheme, because of different base topographic data
 - And a few changes: TTE scheme, let thin clouds rain
- icon-tune-2
 - For MJO: doubled entrainment of deep & mid-level conv., and down drafts
- icon-tune-3
 - Prandtl number for surface heat flux \rightarrow atm. Moisture (cf. Pithan et al., 2015)
- icon-tune-4
 - Critical moisture for high clouds ("crt")
- icon-tune-5 = icon-aes-1.3.00
 - Sub grid-scale blocking and gravity waves

ICON-A tuning – Results

kg/m2

d)

kg/m2

Precipitable water

Vertical integrals of cloud water and ice

Multi variable biases

Quantity	Validation data	Period	Reference
air pressure at sea level	ERA interim	1979-2008	Dee et al. [2011]
toa outgoing longwave radiation	CERES	2001-2013	Loeb et al. [2012]
toa outgoing shortwave radiation	CERES	2001-2013	Loeb et al. [2012]
surface eastward wind stress	ERA interim	1979-2008	Dee et al. [2011]
surface northward wind stress	ERA interim	1979-2008	Dee et al. [2011]
column water vapor content	NVAP	1988-1999	Randel et al. [1996]
total precipitation over ocean	HOAPS	1988-2005	Andersson et al. [2010]
total precipitation over land	GPCP-V2.2	1979-2008	Adler et al. [2003]
surface land temperature	HadCRU4	1979-2008	Jones et al. [2012]
temperature (850 hPa)	ERA interim	1979-2008	Dee et al. [2011]
stationary waves (500 hPa)	ERA interim (geopotential)	1979-2008	Dee et al. [2011]
zonal mean temperature (up to 10 hPa)	ERA interim	1979-2008	Dee et al. [2011]
zonal mean zonal wind (up to 10 hPa)	ERA interim	1979-2008	Dee et al. [2011]

Multi variable biases

- Normalized by biases echam-6.3.04-LR \rightarrow 1
- Extratropics: B(icon) < B(echam)
- Tropic: B(icon) > B(echam)
- Global: B(icon-aes-1.3) < B(echam)

Model versions in Part 2

Name	Model version	Discretization	Grid Spacing	Tuning	Time step
ICON-R2B4	ICON-AES-1.3.00	R2B4, 47 z levels	160 km	Y	600 s
ICON-R2B6	ICON-AES-1.3.00	R2B6, 47 z levels	40 km	R2B4 settings	150 s
ECHAM-LR-(R1/R2)	ECHAM6.3.04	T63, 47 p levels	200 km	Y	450 s
ECHAM-HR	ECHAM6.3.04	T127, 95 p levels	100 km	Y	200 s

- ECHAM6-HR has doubled horizontal and vertical resolution compared to ECHAM6-LR
- ICON-R2B6 has quadrupled horizontal resolution, but same vertical resolution as ICON-R2B4

AMIP multi variable biases

Part II: 1979-2008

Observational datasets

Quantity	Name	Period	Reference
TOA radiative properties	CERES-EBAF-Ed4.0	2000/03-2016/02	Loeb et al. [2009]
Surface radiative properties	CERES-EBAF-Surface-Ed4.0	2000/03-2016/02	Kato et al. [2013]
Total cloud fraction	CALIPSO-GOCCP-v2.9	2006/06-2015/12	Chepfer et al. [2010]
Energy budget	SS12	2000-2012	Stevens and Schwartz [2012]
Barbados cloud fraction	Cloudnet (v0.10.2)	2011/01-2015/09	Stevens et al. [2016]
Leipzig cloud fraction	Cloudnet (v0.10.2)	2011/08-2015/12	n/a
Total precipitation daily	GPCP-V1.2	1979-2008	Huffman et al. [2001]
Total precipitation monthly	GPCP-V2.2	1979-2008	Adler et al. [2003]
Zonal mean temperature	ERA interim	1979-2008	Dee et al. [2011]
Zonal mean zonal wind	ERA interim	1979-2008	Dee et al. [2011]
Sea level pressure	ERA interim	1979-2008	Dee et al. [2011]
Sea surface temperature	HadISST1	1979-2008	Rayner et al. [2003]

Precipitation climatology

Precipitation response to the Niño 3.4 index, DJF

North Atlantic Oscillation (NAO)

Southern Annular Mode in SON

Monthly climatology of large-scale blocking episode frequencies (in %)

Contours = model - ERAinterim

a) ERAin EAtl _ EAsia Dec Nov Oct Sep Aug Jul Jun May Apr Mar Feb Jan 60W 0 60E 120E 180 120W 1 3 5 7 9 11 13 15 16 (%)

60W 0 60E 120E 180 120W

Number and duration of blockings

Wave number-frequency power spectra in precipitation, 13°N-13°S

Max-Planck-Institut für Meteorologie

Wave number-frequency power spectra in precipitation, 13°N-13°S

Summary

- Overall, ... ICON-A provides a compelling representation of the mean climate and its variability.
- Its climate is similar to that of the last release of the well established ECHAM model
- The scope for improving a models climate by tuning is large, larger than simply increasing resolution without re-tuning the configuration. But resolution has benefits.
- Problems to be addressed:
 - Circulation of the middle atmosphere
 - Vertical distribution of clouds

Thanks for your attention

