ICCARUS Offenbach, 2019

Contact: Raphael.Koehler@awi.de

Raphael Köhler, Ralf Jaiser, Dörthe Handorf, Markus Rex, Klaus Dethloff

ICON-NWP: Analysis of stratospheric processes in Northern Hemisphere winter

1) Hypothesis for impact of sea-ice loss Arctic warming (AW) is twice as strong as global Stratospheric polar average [1]. Majority of AW can be vortex strength Stratospheric explained by feedbacks associated top-down control Enhanced upward with diminishing sea ice cover [2]. propagation of

6) Conclusion and Outlook

- Stratosphere is simulated to weak and variable in winter in ICON \bullet
- Effect from sea ice loss is not visible, as polar vortex is constantly disturbed \bullet in ICON simulation
- Careful choice of lower boundary conditions and setup is crucial

- AW favours development of Scandinavian high pressure anomaly and enhanced upward propagation of planetary waves in early winter [3].
- Wave breaking in stratosphere reduces strength of polar vortex and can lead to break down of the polar vortex [4].

Stratospheric top-down control changes atmospheric circulation patterns, favouring a negative AO-like pattern in late winter, thereby affecting mid-latitude weather patterns [3,5].

2) Set up: Seasonal model climatology

Model	ICON-NWP
Seasonal experiments	September – May
Horizontal resolution	R2B5 (~ T159)
Vertical resolution	90 model levels up to 75km
Boundary data	CMIP6 SSTs, sea ice and VMR
Initial data	ERA-Interim data

Further simulations are planned: \bullet

- Different boundary data, higher resolution and/or later initialization, Gravity wave drag sensitivity experiments
- ICON-LAM & LEM experiments in same working group

5) ICON minus ERA-Interim

Simulated years	1979/80 – 2016/17
Ensemblesize	5 (01. Sept. 00Z ± 2x6h)
Sea and lake ice	Bulk thermodynamic (no rheology) sea-ice
	parametrisation scheme (Mironov, 2012)

4) Polar vortex climatology

Zonal mean zonal wind in 60°N and 10hPa

ERA-Interim

References

[1] Cohen, J., et al. "Recent Arctic amplification and extreme mid-latitude weather." Nature geoscience 7.9 (2014): 627.

[2] Screen, James A., and Jennifer A. Francis. "Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability." Nature Climate Change 6.9 (2016): 856.

[3] Crasemann, B., et al. "Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?." Polar Science 14 (2017): 9-20

[4] Jaiser, R., et al. "Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations." Journal of Geophysical Research: Atmospheres 121.13 (2016): 7564-7577

[5] Handorf, D., et al. "Impacts of Arctic sea ice and continental snow cover changes on atmospheric winter teleconnections." Geophysical Research Letters 42.7 (2015): 2367-2377

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR

ICON

Potsdam

Telegrafenberg A45 14473 Potsdam www.awi.de