Global impact of 3D cloud-radiation interactions and importance of cloud geometry

Sophia Schäfer¹,², Robin Hogan³,⁴, Carolin Klinger¹, Mark Fielding³, Najda Villefranche⁵,⁶, Howard Barker⁷
¹Ludwig-Maximilians-University Munich ²Deutscher Wetterdienst ³European Centre for Medium-Range Weather Forecasts ⁴University of Reading ⁵CNRM, Université de Toulouse, Météo-France, CNRS ⁶LAPLACE, Université de Toulouse, CNRS ⁷Environment and Climate Change Canada

1) 3D cloud-radiation effects

- **Reality**: Radiation in multiple directions interacts with complex clouds.
- **Global models use 1D schemes** - radiation only moves vertically; inhomogeneity / overlap parametrised approximately.
- **Local 1D errors** of -25% to +100% in shortwave or up to 40% in longwave cloud radiative effect (CRE).
- **Errors in heating rate profiles** - in cloud development.

![Mechanisms of 3D cloud-radiation effects](image)

Physical mechanisms:
- Shortwave cloud side illumination increases cloud reflectivity, cloud side escape decreases cloud reflectivity.
- Longwave cloud side illumination and escape increase cloud warming effect.
- Shortwave entrapment decreases cloud reflectivity.

![Effects of 3D cloud-radiation](image)

3) Evaluation against Monte Carlo benchmarks

- **Shortwave** (Hogan et al. 2019):
 - Parametrised mean horizontal path profile agrees with Monte Carlo results within 6% for direct and 25% for diffuse radiation.
 - SPARTACUS captures 3D change to CRE and its dependence on SZA to within 10%; slightly overestimates atmospheric absorption.
 - Entrapment decisive for 3D effect.

![Profiles of cloud fraction and SZA](image)

4) Global results

- **Total 3D effect on climate**:
 - **Global fluxes** (net down, surface): Longwave +1.6 Wm⁻²; Shortwave +0.8 Wm⁻²; Total +2.4 Wm⁻².
 - **Temperature increases** by around 1K.
 - **Sensitivity** to entrainment and cloud geometry.

![Global effect on climate](image)

5) Conclusions

- **Cloud 3D effects on radiation are globally appreciable**; in total, they warm the Earth by about 2.4 Wm⁻² or 1K.
- **Shortwave**: Different 3D effects have opposite sign; warming entrainment effect dominates.
- **Cloud side effects** strongest for broken clouds, entrainment effect strongest for deep multilayer clouds.
- **Longwave**: warming effect.
- **SPARTACUS can capture 3D effects efficiently**.
- **ecRad results mostly agree well with Monte Carlo codes**.
- **ecRad and SPARTACUS will be implemented in ICON soon**.

References:

Contact: sophia.schaefe@dwd.de