The Plant-Craig stochastic convection scheme: How it works and some examples of its application

R. J. Keane

1Deutscher Wetterdienst, Germany

26th November 2013

Thanks to: Bob Plant, George Craig, Günther Zängl, Warren Tennant, Christian Keil
Stochastic Physics Week
1. Overview of the Plant-Craig stochastic convection scheme

2. Scale-adaptivity of the Plant-Craig scheme in comparison with deterministic schemes, Part I
 - ICON Aquaplanet
 - Effects of the input averaging

3. Verification in MOGREPS

4. Scale-adaptivity of the Plant-Craig scheme in comparison with deterministic schemes, Part II
 - Convective equilibrium experiment
Variability of convective response to a given large-scale forcing (Convective Equilibrium Experiment)

Taken from Plant & Craig, JAS (2008)
Plant-Craig scheme methodology (I)

- Average u, v, T, q, q_l, q_i over a region large enough to contain many clouds, but small enough that it is representative of the current grid box.
- Use this as input to the Kain-Fritsch trigger scheme.

If convection is initiated:

- Use the Kain-Fritsch plume model, extended to allow for an ensemble of plumes, to calculate vertical properties.
 - The plumes are weighted by $p(m)dm = \frac{1}{\langle m \rangle} e^{-m/\langle m \rangle} dm$.
- The model allows for updraft/downdraft pairs with entrainment and detrainment.
- Entrainment decreases with increasing mass flux.
- The total required mass flux is obtained by scaling so that 90% of cape is removed within the closure time scale. This yields the ensemble mean mass flux $\langle M \rangle$. The ensemble mean mass flux per cloud $\langle m \rangle$ is taken as a ‘fundamental constant’.
Plant-Craig scheme methodology (I)

- Average u, v, T, q_i, q_i over a region large enough to contain many clouds, but small enough that it is representative of the current grid box.
- Use this as input to the Kain-Fritsch trigger scheme.

If convection is initiated:
- Use the Kain-Fritsch plume model, extended to allow for an ensemble of plumes, to calculate vertical properties.
 - The plumes are weighted by $p(m)\,dm = \frac{1}{\langle m \rangle} e^{-m/\langle m \rangle} \,dm$.
- The model allows for updraft/downdraft pairs with entrainment and detrainment.
- Entrainment decreases with increasing mass flux.
- The total required mass flux is obtained by scaling so that 90% of cape is removed within the closure time scale. This yields the ensemble mean mass flux $\langle M \rangle$. The ensemble mean mass flux per cloud $\langle m \rangle$ is taken as a ‘fundamental constant’.
Plant-Craig scheme methodology (I)

- Average u, v, T, q, q_l, q_i over a region large enough to contain many clouds, but small enough that it is representative of the current grid box.
- Use this as input to the Kain-Fritsch trigger scheme.

If convection is initiated:
- Use the Kain-Fritsch plume model, extended to allow for an ensemble of plumes, to calculate vertical properties.
 - The plumes are weighted by $p(m)\, dm = \frac{1}{\langle m \rangle} e^{-m/\langle m \rangle} \, dm$.
- The model allows for updraft/downdraft pairs with entrainment and detrainment.
- Entrainment decreases with increasing mass flux.
- The total required mass flux is obtained by scaling so that 90% of cape is removed within the closure time scale. This yields the ensemble mean mass flux $\langle M \rangle$. The ensemble mean mass flux per cloud $\langle m \rangle$ is taken as a ‘fundamental constant’.
Plant-Craig scheme methodology (I)

- Average u, v, T, q, q_l, q_i over a region large enough to contain many clouds, but small enough that it is representative of the current grid box.
- Use this as input to the Kain-Fritsch trigger scheme.

If convection is initiated:

- Use the Kain-Fritsch plume model, extended to allow for an ensemble of plumes, to calculate vertical properties.
 - The plumes are weighted by $p(m) \, dm = \frac{1}{\langle m \rangle} \, e^{-m/\langle m \rangle} \, dm$.
- The model allows for updraft/downdraft pairs with entrainment and detrainment.
- Entrainment decreases with increasing mass flux.
- The total required mass flux is obtained by scaling so that 90% of cape is removed within the closure time scale. This yields the ensemble mean mass flux $\langle M \rangle$. The ensemble mean mass flux per cloud $\langle m \rangle$ is taken as a ‘fundamental constant’.
Plant-Craig scheme methodology (II)

- Use $\langle M \rangle$ and $\langle m \rangle$ to scale the PDF of cloud mass fluxes:

$$\frac{\langle M \rangle}{\langle m \rangle^2} e^{-m/\langle m \rangle} \frac{\delta t}{t_L} \delta m.$$

The extra factor $\delta t/t_L$ is to account for the finite lifetime t_L of the clouds (δt is the model time step).

- Split this PDF into bins δm and choose randomly (based on the probability for that bin) whether or not to initiate a cloud for each bin.

- For each cloud initiated, use the Kain-Fritsch plume model to determine vertical tendency profiles.

- These tendency profiles last for a time t_L. Clouds older than t_L are removed and the remaining tendency profiles are summed to give the overall tendency profiles to feed back to the dynamics.
Plant-Craig scheme methodology (II)

- Use $\langle M \rangle$ and $\langle m \rangle$ to scale the PDF of cloud mass fluxes:

$$\frac{\langle M \rangle}{\langle m \rangle^2} e^{-m/\langle m \rangle} \frac{\delta t}{t_L} \delta m.$$

The extra factor $\delta t/t_L$ is to account for the finite lifetime t_L of the clouds (δt is the model time step).

- Split this PDF into bins δm and choose randomly (based on the probability for that bin) whether or not to initiate a cloud for each bin.

- For each cloud initiated, use the Kain-Fritsch plume model to determine vertical tendency profiles.

- These tendency profiles last for a time t_L. Clouds older than t_L are removed and the remaining tendency profiles are summed to give the overall tendency profiles to feed back to the dynamics.
Plant-Craig scheme methodology (II)

- Use $\langle M \rangle$ and $\langle m \rangle$ to scale the PDF of cloud mass fluxes:

$$\frac{\langle M \rangle}{\langle m \rangle^2} e^{-m/\langle m \rangle} \frac{\delta t}{t_L} \delta m.$$

The extra factor $\delta t/t_L$ is to account for the finite lifetime t_L of the clouds (δt is the model time step).

- Split this PDF into bins δm and choose randomly (based on the probability for that bin) whether or not to initiate a cloud for each bin.

- For each cloud initiated, use the Kain-Fritsch plume model to determine vertical tendency profiles.

- These tendency profiles last for a time t_L. Clouds older than t_L are removed and the remaining tendency profiles are summed to give the overall tendency profiles to feed back to the dynamics.
German Icosahedral Nonhydrostatic General Circulation Model (ICON)

- Jointly developed by DWD and the MPIM in Hamburg.
- The results shown here are for different constant resolutions (40 km to 160 km), to determine how the rainfall variability varies with resolution.
- Input averaging (equivalent length 80 km) is applied for the 40 km run; the effects of varying this averaging are also shown.
- The Aquaplanet setup is used here in order to isolate variability due to different schemes.
German Icosahedral Nonhydrostatic General Circulation Model (ICON)

- Jointly developed by DWD and the MPIM in Hamburg.
- The results shown here are for different constant resolutions (40 km to 160 km), to determine how the rainfall variability varies with resolution.
- Input averaging (equivalent length 80 km) is applied for the 40 km run; the effects of varying this averaging are also shown.
- The Aquaplanet setup is used here in order to isolate variability due to different schemes.
German Icosahedral Nonhydrostatic General Circulation Model (ICON)

- Jointly developed by DWD and the MPIM in Hamburg.
- The results shown here are for different constant resolutions (40 km to 160 km), to determine how the rainfall variability varies with resolution.
- Input averaging (equivalent length 80 km) is applied for the 40 km run; the effects of varying this averaging are also shown.
- The Aquaplanet setup is used here in order to isolate variability due to different schemes.
PDFs of 6-hour rainfall accumulation for the two different deterministic schemes, at three different resolutions.

- Every 6 hours for 3–6 months, between ±20 degrees latitude.
PDFs of 6-hour rainfall accumulation for the stochastic scheme, at three different resolutions.

- Every 6 hours for 3–6 months, between ±20 degrees latitude.
PDFs of 6-hour rainfall accumulation for the stochastic scheme, upscaled onto the 160 km grid.

- Every 6 hours for 3–6 months, between ±20 degrees latitude.
PDFs of 6-hour rainfall accumulation for the stochastic scheme, upscaled, with no input averaging.

- Every 6 hours for 3–6 months, between ±20 degrees latitude.
PDFs of instantaneous mass flux ($\langle M \rangle$ from the CAPE closure) for the stochastic scheme

- Every 6 hours for 10–50 days, between ± 20 degrees latitude.
- Results are for 40 km grid spacing.
PDFs of instantaneous rainfall rate for the stochastic scheme, for different amounts of input averaging.

- Every 6 hours for 10–50 days, between ±20 degrees latitude.
- Results are for 40 km grid spacing.
PDFs of 6-hour rainfall accumulation for the stochastic scheme, for different amounts of input averaging.

- Every 6 hours for 10–50 days, between ±20 degrees latitude.
- Results are for 40 km grid spacing.
Effect on distribution of temperature at 2.67 km

![Graph showing the distribution of temperature at 2.67 km](image)

- **PDF (K⁻¹)**
- **Temperature (K)**
- **Deterministic**
- **Stochastic**
The setup described here is what was used in this study.

- 24 members, 24 km grid length.
- Domain over Europe and the North Atlantic.
- 2 forecasts per day, 10–31 July 2009 (34 forecasts in total); 54 hour lead time.
- MOGREPS forecasts with the Plant-Craig scheme ("EXP") are verified in comparison with the Gregory-Rowntree scheme ("CTL").
- Rainfall over the UK is investigated in detail using NIMROD data.
Met Office (Global and) Regional Ensemble Prediction System

- The setup described here is what was used in this study.
- 24 members, 24 km grid length.
- Domain over Europe and the North Atlantic.
- 2 forecasts per day, 10–31 July 2009 (34 forecasts in total); 54 hour lead time.
- MOGREPS forecasts with the Plant-Craig scheme ("EXP") are verified in comparison with the Gregory-Rowntree scheme ("CTL").
- Rainfall over the UK is investigated in detail using NIMROD data.
Met Office (Global and) Regional Ensemble Prediction System

- The setup described here is what was used in this study.
- 24 members, 24 km grid length.
- Domain over Europe and the North Atlantic.
- 2 forecasts per day, 10–31 July 2009 (34 forecasts in total); 54 hour lead time.
- MOGREPS forecasts with the Plant-Craig scheme ("EXP") are verified in comparison with the Gregory-Rowntree scheme ("CTL").
- Rainfall over the UK is investigated in detail using NIMROD data.
The setup described here is what was used in this study.

- 24 members, 24 km grid length.
- Domain over Europe and the North Atlantic.
- 2 forecasts per day, 10–31 July 2009 (34 forecasts in total); 54 hour lead time.
- MOGREPS forecasts with the Plant-Craig scheme ("EXP") are verified in comparison with the Gregory-Rowntree scheme ("CTL").
- Rainfall over the UK is investigated in detail using NIMROD data.
Met Office (Global and) Regional Ensemble Prediction System

- The setup described here is what was used in this study.
- 24 members, 24 km grid length.
- Domain over Europe and the North Atlantic.
- 2 forecasts per day, 10–31 July 2009 (34 forecasts in total); 54 hour lead time.
- MOGREPS forecasts with the Plant-Craig scheme (“EXP”) are verified in comparison with the Gregory-Rowntree scheme (“CTL”).
- Rainfall over the UK is investigated in detail using NIMROD data.
Mean rainfall accumulation

12–18 hour forecast

48–54 hour forecast

Richard Keane
Rainfall accumulation variability

12–18 hour forecast

48–54 hour forecast

24 km

120 km
Model spread and error

Spread / Error (mm in 6 hours)

Forecast horizon (hours)

error GR
error PC
spread GR
spread PC

Richard Keane
Brier Skill Scores

Threshold: 0.3 mm

Threshold: 3.0 mm

24 km

120 km

Richard Keane
Convective equilibrium experiment

- UK Met Office UM used in idealised mode.
- Square domain, with bicyclic boundary conditions.
- 32km grid length, 512km total domain size.
- Constant sea-surface temperature applied; the surface heat transfer is allowed to vary.
- The atmosphere is forced by a uniform imposed cooling profile.
- The ensemble mean total mass flux $\langle M \rangle$ is constant.
Convective equilibrium experiment

- UK Met Office UM used in idealised mode.
- Square domain, with bicyclic boundary conditions.
- 32km grid length, 512km total domain size.
- Constant sea-surface temperature applied; the surface heat transfer is allowed to vary.
- The atmosphere is forced by a uniform imposed cooling profile.
- The ensemble mean total mass flux $\langle M \rangle$ is constant.
Convective equilibrium experiment

- UK Met Office UM used in idealised mode.
- Square domain, with bicyclic boundary conditions.
- 32km grid length, 512km total domain size.
- Constant sea-surface temperature applied; the surface heat transfer is allowed to vary.
- The atmosphere is forced by a uniform imposed cooling profile.
- The ensemble mean total mass flux $\langle M \rangle$ is constant.
Convective equilibrium experiment – Cohen-Craig theory

Given an average number of clouds $\langle N \rangle$, the actual number of clouds N follows a Poisson distribution:

$$p_{\langle N \rangle}(N) = \frac{\langle N \rangle^N e^{-\langle N \rangle}}{N!}.$$

Combining this with the probability that the mass flux is M, given N:

$$p_N(M) = \int_0^M p_{N-1}(M-u)p(u)du$$

leads to a PDF of total mass flux:

$$p(M, \langle m \rangle, \langle M \rangle) = \delta(M)e^{-\langle M \rangle} + \frac{1}{\langle m \rangle} \sqrt{\frac{\langle M \rangle}{M}} e^{-\frac{M+\langle M \rangle}{\langle m \rangle}} l_1 \left(\frac{2}{\langle m \rangle} \sqrt{M\langle M \rangle} \right).$$
Convective equilibrium experiment – Cohen-Craig theory

Given an average number of clouds $\langle N \rangle$, the actual number of clouds N follows a Poisson distribution:

$$p_{\langle N \rangle}(N) = \frac{\langle N \rangle^N e^{-\langle N \rangle}}{N!}.$$

Combining this with the probability that the mass flux is M, given N:

$$p_N(M) = \int_0^M p_{N-1}(M-u)p(u)du$$

leads to a PDF of total mass flux:

$$p(M, \langle m \rangle, \langle M \rangle) = \delta(M)e^{-\langle M \rangle} +$$

$$\frac{1}{\langle m \rangle} \sqrt{\frac{\langle M \rangle}{M}} e^{-\frac{M+\langle M \rangle}{\langle m \rangle}} I_1 \left(2 \frac{\langle m \rangle}{\langle m \rangle} \sqrt{M \langle M \rangle} \right).$$
Convective equilibrium experiment – Cohen-Craig theory

Given an average number of clouds $\langle N \rangle$, the actual number of clouds N follows a Poisson distribution:

$$p_{\langle N \rangle}(N) = \frac{\langle N \rangle^N e^{-\langle N \rangle}}{N!}.$$

Combining this with the probability that the mass flux is M, given N:

$$p_N(M) = \int_0^M p_{N-1}(M-u)p(u)du$$

leads to a PDF of total mass flux:

$$p(M, \langle m \rangle, \langle M \rangle) = \delta(M)e^{-\frac{\langle M \rangle}{\langle m \rangle}} +$$

$$\frac{1}{\langle m \rangle} \sqrt{\frac{\langle M \rangle}{M}} e^{-\frac{M+\langle M \rangle}{\langle m \rangle}} I_1 \left(\frac{2}{\langle m \rangle} \sqrt{M \langle M \rangle} \right).$$
Comparing rainfall PDFs

- Assume that convective rainfall C is a linear function of mass flux M.
- Then a PDF of rainfall $p(C, \langle c \rangle, \langle C \rangle)$ can be derived, with the same shape as $p(M, \langle m \rangle, \langle M \rangle)$.
- This allows a comparison of PDFs from different schemes.
- This can be done for different scales, by looking at the rainfall over different numbers of grid boxes.
- Because $\langle c \rangle$ is not known, it is fitted to give the best agreement, for one scale.
 - This same value is then used for all scales.
 - In this way, the scale adaptivity of each scheme can be assessed.
Comparing rainfall PDFs

- Assume that convective rainfall C is a linear function of mass flux M.
- Then a PDF of rainfall $p(C, \langle c \rangle, \langle C \rangle)$ can be derived, with the same shape as $p(M, \langle m \rangle, \langle M \rangle)$.
- This allows a comparison of PDFs from different schemes.
- This can be done for different scales, by looking at the rainfall over different numbers of grid boxes.
- Because $\langle c \rangle$ is not known, it is fitted to give the best agreement, for one scale.
 - This same value is then used for all scales.
 - In this way, the scale adaptivity of each scheme can be assessed.
Comparing rainfall PDFs

- Assume that convective rainfall C is a linear function of mass flux M.
- Then a PDF of rainfall $p(C, \langle c \rangle, \langle C \rangle)$ can be derived, with the same shape as $p(M, \langle m \rangle, \langle M \rangle)$.
- This allows a comparison of PDFs from different schemes.
- This can be done for different scales, by looking at the rainfall over different numbers of grid boxes.
- Because $\langle c \rangle$ is not known, it is fitted to give the best agreement, for one scale.
 - This same value is then used for all scales.
 - In this way, the scale adaptivity of each scheme can be assessed.
Rainfall PDFs for Gregory-Rowntree scheme

Rainfall rate (kgm\(^{-2}\) s\(^{-1}\))

Probability

Data

Theory

256 km

64 km

128 km

32 km

Richard Keane
Rainfall PDFs for Kain-Fritsch scheme

256 km

64 km

128 km

32 km
Rainfall PDFs for Plant-Craig scheme

256 km

64 km

128 km

32 km
References

- Keane RJ, Plant RS, Tennant WJ. The Plant-Craig stochastic convection scheme in MOGREPS. In preparation.
- Keane RJ, Plant RS. 2012. Large-scale length and time-scales for use with stochastic convective parametrization. Q. J. R. Meteorological Soc. DOI:10.1002/qj.992